{ "data": { "question": { "questionId": "1497", "questionFrontendId": "1381", "boundTopicId": null, "title": "Design a Stack With Increment Operation", "titleSlug": "design-a-stack-with-increment-operation", "content": "
Design a stack that supports increment operations on its elements.
\n\nImplement the CustomStack class:
CustomStack(int maxSize) Initializes the object with maxSize which is the maximum number of elements in the stack.void push(int x) Adds x to the top of the stack if the stack has not reached the maxSize.int pop() Pops and returns the top of the stack or -1 if the stack is empty.void inc(int k, int val) Increments the bottom k elements of the stack by val. If there are less than k elements in the stack, increment all the elements in the stack.\n
Example 1:
\n\n\nInput\n["CustomStack","push","push","pop","push","push","push","increment","increment","pop","pop","pop","pop"]\n[[3],[1],[2],[],[2],[3],[4],[5,100],[2,100],[],[],[],[]]\nOutput\n[null,null,null,2,null,null,null,null,null,103,202,201,-1]\nExplanation\nCustomStack stk = new CustomStack(3); // Stack is Empty []\nstk.push(1); // stack becomes [1]\nstk.push(2); // stack becomes [1, 2]\nstk.pop(); // return 2 --> Return top of the stack 2, stack becomes [1]\nstk.push(2); // stack becomes [1, 2]\nstk.push(3); // stack becomes [1, 2, 3]\nstk.push(4); // stack still [1, 2, 3], Do not add another elements as size is 4\nstk.increment(5, 100); // stack becomes [101, 102, 103]\nstk.increment(2, 100); // stack becomes [201, 202, 103]\nstk.pop(); // return 103 --> Return top of the stack 103, stack becomes [201, 202]\nstk.pop(); // return 202 --> Return top of the stack 202, stack becomes [201]\nstk.pop(); // return 201 --> Return top of the stack 201, stack becomes []\nstk.pop(); // return -1 --> Stack is empty return -1.\n\n\n
\n
Constraints:
\n\n1 <= maxSize, x, k <= 10000 <= val <= 1001000 calls will be made to each method of increment, push and pop each separately.Compiled with clang 11 using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2 using the gnu11 standard.
Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7.
Kotlin 1.9.0.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }