You are given three integers n, l, and r.
A ZigZag array of length n is defined as follows:
[l, r].Return the total number of valid ZigZag arrays.
Since the answer may be large, return it modulo 109 + 7.
A sequence is said to be strictly increasing if each element is strictly greater than its previous one (if exists).
A sequence is said to be strictly decreasing if each element is strictly smaller than its previous one (if exists).
Example 1:
Input: n = 3, l = 4, r = 5
Output: 2
Explanation:
There are only 2 valid ZigZag arrays of length n = 3 using values in the range [4, 5]:
[4, 5, 4][5, 4, 5]Example 2:
Input: n = 3, l = 1, r = 3
Output: 10
Explanation:
There are 10 valid ZigZag arrays of length n = 3 using values in the range [1, 3]:
[1, 2, 1], [1, 3, 1], [1, 3, 2][2, 1, 2], [2, 1, 3], [2, 3, 1], [2, 3, 2][3, 1, 2], [3, 1, 3], [3, 2, 3]All arrays meet the ZigZag conditions.
Constraints:
3 <= n <= 20001 <= l < r <= 2000