You are given two string arrays positive_feedback and negative_feedback, containing the words denoting positive and negative feedback, respectively. Note that no word is both positive and negative.
Initially every student has 0 points. Each positive word in a feedback report increases the points of a student by 3, whereas each negative word decreases the points by 1.
You are given n feedback reports, represented by a 0-indexed string array report and a 0-indexed integer array student_id, where student_id[i] represents the ID of the student who has received the feedback report report[i]. The ID of each student is unique.
Given an integer k, return the top k students after ranking them in non-increasing order by their points. In case more than one student has the same points, the one with the lower ID ranks higher.
Example 1:
Input: positive_feedback = ["smart","brilliant","studious"], negative_feedback = ["not"], report = ["this student is studious","the student is smart"], student_id = [1,2], k = 2 Output: [1,2] Explanation: Both the students have 1 positive feedback and 3 points but since student 1 has a lower ID he ranks higher.
Example 2:
Input: positive_feedback = ["smart","brilliant","studious"], negative_feedback = ["not"], report = ["this student is not studious","the student is smart"], student_id = [1,2], k = 2 Output: [2,1] Explanation: - The student with ID 1 has 1 positive feedback and 1 negative feedback, so he has 3-1=2 points. - The student with ID 2 has 1 positive feedback, so he has 3 points. Since student 2 has more points, [2,1] is returned.
Constraints:
1 <= positive_feedback.length, negative_feedback.length <= 1041 <= positive_feedback[i].length, negative_feedback[j].length <= 100positive_feedback[i] and negative_feedback[j] consists of lowercase English letters.positive_feedback and negative_feedback.n == report.length == student_id.length1 <= n <= 104report[i] consists of lowercase English letters and spaces ' '.report[i].1 <= report[i].length <= 1001 <= student_id[i] <= 109student_id[i] are unique.1 <= k <= n