A concert hall has n rows numbered from 0 to n - 1, each with m seats, numbered from 0 to m - 1. You need to design a ticketing system that can allocate seats in the following cases:
k spectators can sit together in a row.k spectators can get a seat. They may or may not sit together.Note that the spectators are very picky. Hence:
maxRow. maxRow can vary from group to group.Implement the BookMyShow class:
BookMyShow(int n, int m) Initializes the object with n as number of rows and m as number of seats per row.int[] gather(int k, int maxRow) Returns an array of length 2 denoting the row and seat number (respectively) of the first seat being allocated to the k members of the group, who must sit together. In other words, it returns the smallest possible r and c such that all [c, c + k - 1] seats are valid and empty in row r, and r <= maxRow. Returns [] in case it is not possible to allocate seats to the group.boolean scatter(int k, int maxRow) Returns true if all k members of the group can be allocated seats in rows 0 to maxRow, who may or may not sit together. If the seats can be allocated, it allocates k seats to the group with the smallest row numbers, and the smallest possible seat numbers in each row. Otherwise, returns false.
Example 1:
Input
["BookMyShow", "gather", "gather", "scatter", "scatter"]
[[2, 5], [4, 0], [2, 0], [5, 1], [5, 1]]
Output
[null, [0, 0], [], true, false]
Explanation
BookMyShow bms = new BookMyShow(2, 5); // There are 2 rows with 5 seats each
bms.gather(4, 0); // return [0, 0]
// The group books seats [0, 3] of row 0.
bms.gather(2, 0); // return []
// There is only 1 seat left in row 0,
// so it is not possible to book 2 consecutive seats.
bms.scatter(5, 1); // return True
// The group books seat 4 of row 0 and seats [0, 3] of row 1.
bms.scatter(5, 1); // return False
// There is only one seat left in the hall.
Constraints:
1 <= n <= 5 * 1041 <= m, k <= 1090 <= maxRow <= n - 15 * 104 calls in total will be made to gather and scatter.