You are given an integer array nums of length n.
A trionic subarray is a contiguous subarray nums[l...r] (with 0 <= l < r < n) for which there exist indices l < p < q < r such that:
nums[l...p] is strictly increasing,nums[p...q] is strictly decreasing,nums[q...r] is strictly increasing.Return the maximum sum of any trionic subarray in nums.
Example 1:
Input: nums = [0,-2,-1,-3,0,2,-1]
Output: -4
Explanation:
Pick l = 1, p = 2, q = 3, r = 5:
nums[l...p] = nums[1...2] = [-2, -1] is strictly increasing (-2 < -1).nums[p...q] = nums[2...3] = [-1, -3] is strictly decreasing (-1 > -3)nums[q...r] = nums[3...5] = [-3, 0, 2] is strictly increasing (-3 < 0 < 2).(-2) + (-1) + (-3) + 0 + 2 = -4.Example 2:
Input: nums = [1,4,2,7]
Output: 14
Explanation:
Pick l = 0, p = 1, q = 2, r = 3:
nums[l...p] = nums[0...1] = [1, 4] is strictly increasing (1 < 4).nums[p...q] = nums[1...2] = [4, 2] is strictly decreasing (4 > 2).nums[q...r] = nums[2...3] = [2, 7] is strictly increasing (2 < 7).1 + 4 + 2 + 7 = 14.
Constraints:
4 <= n = nums.length <= 105-109 <= nums[i] <= 109