给你一份 n 位朋友的亲近程度列表,其中 n 总是 偶数 。
对每位朋友 i,preferences[i] 包含一份 按亲近程度从高到低排列 的朋友列表。换句话说,排在列表前面的朋友与 i 的亲近程度比排在列表后面的朋友更高。每个列表中的朋友均以 0 到 n-1 之间的整数表示。
所有的朋友被分成几对,配对情况以列表 pairs 给出,其中 pairs[i] = [xi, yi] 表示 xi 与 yi 配对,且 yi 与 xi 配对。
但是,这样的配对情况可能会使其中部分朋友感到不开心。在 x 与 y 配对且 u 与 v 配对的情况下,如果同时满足下述两个条件,x 就会不开心:
x 与 u 的亲近程度胜过 x 与 y,且u 与 x 的亲近程度胜过 u 与 v返回 不开心的朋友的数目 。
示例 1:
输入:n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]] 输出:2 解释: 朋友 1 不开心,因为: - 1 与 0 配对,但 1 与 3 的亲近程度比 1 与 0 高,且 - 3 与 1 的亲近程度比 3 与 2 高。 朋友 3 不开心,因为: - 3 与 2 配对,但 3 与 1 的亲近程度比 3 与 2 高,且 - 1 与 3 的亲近程度比 1 与 0 高。 朋友 0 和 2 都是开心的。
示例 2:
输入:n = 2, preferences = [[1], [0]], pairs = [[1, 0]] 输出:0 解释:朋友 0 和 1 都开心。
示例 3:
输入:n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]] 输出:4
提示:
2 <= n <= 500n 是偶数preferences.length == npreferences[i].length == n - 10 <= preferences[i][j] <= n - 1preferences[i] 不包含 ipreferences[i] 中的所有值都是独一无二的pairs.length == n/2pairs[i].length == 2xi != yi0 <= xi, yi <= n - 1