给你一个网格图,由 n + 2 条 横线段 和 m + 2 条 竖线段 组成,一开始所有区域均为 1 x 1 的单元格。
所有线段的编号从 1 开始。
给你两个整数 n 和 m 。
同时给你两个整数数组 hBars 和 vBars 。
hBars 包含区间 [2, n + 1] 内 互不相同 的横线段编号。vBars 包含 [2, m + 1] 内 互不相同的 竖线段编号。如果满足以下条件之一,你可以 移除 两个数组中的部分线段:
hBars 中的值。vBars 中的值。请你返回移除一些线段后(可能不移除任何线段),剩余网格图中 最大正方形 空洞的面积,正方形空洞的意思是正方形 内部 不含有任何线段。
示例 1:

输入:n = 2, m = 1, hBars = [2,3], vBars = [2] 输出:4 解释:左边的图是一开始的网格图。 横线编号的范围是区间 [1,4] ,竖线编号的范围是区间 [1,3] 。 可以移除的横线段为 [2,3] ,竖线段为 [2] 。 一种得到最大正方形面积的方法是移除横线段 2 和竖线段 2 。 操作后得到的网格图如右图所示。 正方形空洞面积为 4。 无法得到面积大于 4 的正方形空洞。 所以答案为 4 。
示例 2:

输入:n = 1, m = 1, hBars = [2], vBars = [2] 输出:4 解释:左边的图是一开始的网格图。 横线编号的范围是区间 [1,3] ,竖线编号的范围是区间 [1,3] 。 可以移除的横线段为 [2] ,竖线段为 [2] 。 一种得到最大正方形面积的方法是移除横线段 2 和竖线段 2 。 操作后得到的网格图如右图所示。 正方形空洞面积为 4。 无法得到面积大于 4 的正方形空洞。 所以答案为 4 。
示例 3:

输入:n = 2, m = 3, hBars = [2,3], vBars = [2,3,4] 输出:9 解释:左边的图是一开始的网格图。 横线编号的范围是区间 [1,4] ,竖线编号的范围是区间 [1,5] 。 可以移除的横线段为 [2,3] ,竖线段为 [2,3,4] 。 一种得到最大正方形面积的方法是移除横线段 2、3 和竖线段 3、4 。 操作后得到的网格图如右图所示。 正方形空洞面积为 9。 无法得到面积大于 9 的正方形空洞。 所以答案为 9 。
提示:
1 <= n <= 1091 <= m <= 1091 <= hBars.length <= 1002 <= hBars[i] <= n + 11 <= vBars.length <= 1002 <= vBars[i] <= m + 1hBars 中的值互不相同。vBars 中的值互不相同。