给你一个 n 个节点的无向无根图,节点编号为 0 到 n - 1 。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间有一条边。
每个节点都有一个价值。给你一个整数数组 price ,其中 price[i] 是第 i 个节点的价值。
一条路径的 价值和 是这条路径上所有节点的价值之和。
你可以选择树中任意一个节点作为根节点 root 。选择 root 为根的 开销 是以 root 为起点的所有路径中,价值和 最大的一条路径与最小的一条路径的差值。
请你返回所有节点作为根节点的选择中,最大 的 开销 为多少。
示例 1:

输入:n = 6, edges = [[0,1],[1,2],[1,3],[3,4],[3,5]], price = [9,8,7,6,10,5] 输出:24 解释:上图展示了以节点 2 为根的树。左图(红色的节点)是最大价值和路径,右图(蓝色的节点)是最小价值和路径。 - 第一条路径节点为 [2,1,3,4]:价值为 [7,8,6,10] ,价值和为 31 。 - 第二条路径节点为 [2] ,价值为 [7] 。 最大路径和与最小路径和的差值为 24 。24 是所有方案中的最大开销。
示例 2:

输入:n = 3, edges = [[0,1],[1,2]], price = [1,1,1] 输出:2 解释:上图展示了以节点 0 为根的树。左图(红色的节点)是最大价值和路径,右图(蓝色的节点)是最小价值和路径。 - 第一条路径包含节点 [0,1,2]:价值为 [1,1,1] ,价值和为 3 。 - 第二条路径节点为 [0] ,价值为 [1] 。 最大路径和与最小路径和的差值为 2 。2 是所有方案中的最大开销。
提示:
1 <= n <= 105edges.length == n - 10 <= ai, bi <= n - 1edges 表示一棵符合题面要求的树。price.length == n1 <= price[i] <= 105