表:restaurant_orders

+------------------+----------+
| Column Name      | Type     | 
+------------------+----------+
| order_id         | int      |
| customer_id      | int      |
| order_timestamp  | datetime |
| order_amount     | decimal  |
| payment_method   | varchar  |
| order_rating     | int      |
+------------------+----------+
order_id 是这张表的唯一主键。
payment_method 可以是 cash,card 或 app。
order_rating 在 1 到 5 之间,其中 5 是最佳(如果没有评分则是 NULL)。
order_timestamp 同时包含日期和时间信息。

编写一个解决方案来寻找 黄金时间客户 - 高峰时段持续订购且满意度高的客户。客户若满足以下所有条件,则被视为 黄金时段客户

返回结果表按 average_rating 降序 排序,然后按 customer_id 降序 排序。

结果格式如下所示。

 

示例:

输入:

restaurant_orders 表:

+----------+-------------+---------------------+--------------+----------------+--------------+
| order_id | customer_id | order_timestamp     | order_amount | payment_method | order_rating |
+----------+-------------+---------------------+--------------+----------------+--------------+
| 1        | 101         | 2024-03-01 12:30:00 | 25.50        | card           | 5            |
| 2        | 101         | 2024-03-02 19:15:00 | 32.00        | app            | 4            |
| 3        | 101         | 2024-03-03 13:45:00 | 28.75        | card           | 5            |
| 4        | 101         | 2024-03-04 20:30:00 | 41.00        | app            | NULL         |
| 5        | 102         | 2024-03-01 11:30:00 | 18.50        | cash           | 4            |
| 6        | 102         | 2024-03-02 12:00:00 | 22.00        | card           | 3            |
| 7        | 102         | 2024-03-03 15:30:00 | 19.75        | cash           | NULL         |
| 8        | 103         | 2024-03-01 19:00:00 | 55.00        | app            | 5            |
| 9        | 103         | 2024-03-02 20:45:00 | 48.50        | app            | 4            |
| 10       | 103         | 2024-03-03 18:30:00 | 62.00        | card           | 5            |
| 11       | 104         | 2024-03-01 10:00:00 | 15.00        | cash           | 3            |
| 12       | 104         | 2024-03-02 09:30:00 | 18.00        | cash           | 2            |
| 13       | 104         | 2024-03-03 16:00:00 | 20.00        | card           | 3            |
| 14       | 105         | 2024-03-01 12:15:00 | 30.00        | app            | 4            |
| 15       | 105         | 2024-03-02 13:00:00 | 35.50        | app            | 5            |
| 16       | 105         | 2024-03-03 11:45:00 | 28.00        | card           | 4            |
+----------+-------------+---------------------+--------------+----------------+--------------+

输出:

+-------------+--------------+----------------------+----------------+
| customer_id | total_orders | peak_hour_percentage | average_rating |
+-------------+--------------+----------------------+----------------+
| 103         | 3            | 100                  | 4.67           |
| 101         | 4            | 75                   | 4.67           |
| 105         | 3            | 100                  | 4.33           |
+-------------+--------------+----------------------+----------------+

解释:

结果表按 average_rating 降序排序,然后按 customer_id 降序排序。