给你一个长度为 n 的整数数组 nums ,下标从 0 开始。
如果在下标 i 处 分割 数组,其中 0 <= i <= n - 2 ,使前 i + 1 个元素的乘积和剩余元素的乘积互质,则认为该分割 有效 。
nums = [2, 3, 3] ,那么在下标 i = 0 处的分割有效,因为 2 和 9 互质,而在下标 i = 1 处的分割无效,因为 6 和 3 不互质。在下标 i = 2 处的分割也无效,因为 i == n - 1 。返回可以有效分割数组的最小下标 i ,如果不存在有效分割,则返回 -1 。
当且仅当 gcd(val1, val2) == 1 成立时,val1 和 val2 这两个值才是互质的,其中 gcd(val1, val2) 表示 val1 和 val2 的最大公约数。
示例 1:
输入:nums = [4,7,8,15,3,5] 输出:2 解释:上表展示了每个下标 i 处的前 i + 1 个元素的乘积、剩余元素的乘积和它们的最大公约数的值。 唯一一个有效分割位于下标 2 。
示例 2:
输入:nums = [4,7,15,8,3,5] 输出:-1 解释:上表展示了每个下标 i 处的前 i + 1 个元素的乘积、剩余元素的乘积和它们的最大公约数的值。 不存在有效分割。
提示:
n == nums.length1 <= n <= 1041 <= nums[i] <= 106