<p>You are given two jugs with capacities <code>jug1Capacity</code> and <code>jug2Capacity</code> liters. There is an infinite amount of water supply available. Determine whether it is possible to measure exactly <code>targetCapacity</code> liters using these two jugs.</p> <p>If <code>targetCapacity</code> liters of water are measurable, you must have <code>targetCapacity</code> liters of water contained <strong>within one or both buckets</strong> by the end.</p> <p>Operations allowed:</p> <ul> <li>Fill any of the jugs with water.</li> <li>Empty any of the jugs.</li> <li>Pour water from one jug into another till the other jug is completely full, or the first jug itself is empty.</li> </ul> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> jug1Capacity = 3, jug2Capacity = 5, targetCapacity = 4 <strong>Output:</strong> true <strong>Explanation:</strong> The famous <a href="https://www.youtube.com/watch?v=BVtQNK_ZUJg&ab_channel=notnek01" target="_blank">Die Hard</a> example </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> jug1Capacity = 2, jug2Capacity = 6, targetCapacity = 5 <strong>Output:</strong> false </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> jug1Capacity = 1, jug2Capacity = 2, targetCapacity = 3 <strong>Output:</strong> true </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= jug1Capacity, jug2Capacity, targetCapacity <= 10<sup>6</sup></code></li> </ul>