<p>You are given an <code>m x n</code> binary matrix <code>mat</code> of <code>1</code>'s (representing soldiers) and <code>0</code>'s (representing civilians). The soldiers are positioned <strong>in front</strong> of the civilians. That is, all the <code>1</code>'s will appear to the <strong>left</strong> of all the <code>0</code>'s in each row.</p> <p>A row <code>i</code> is <strong>weaker</strong> than a row <code>j</code> if one of the following is true:</p> <ul> <li>The number of soldiers in row <code>i</code> is less than the number of soldiers in row <code>j</code>.</li> <li>Both rows have the same number of soldiers and <code>i < j</code>.</li> </ul> <p>Return <em>the indices of the </em><code>k</code><em> <strong>weakest</strong> rows in the matrix ordered from weakest to strongest</em>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> mat = [[1,1,0,0,0], [1,1,1,1,0], [1,0,0,0,0], [1,1,0,0,0], [1,1,1,1,1]], k = 3 <strong>Output:</strong> [2,0,3] <strong>Explanation:</strong> The number of soldiers in each row is: - Row 0: 2 - Row 1: 4 - Row 2: 1 - Row 3: 2 - Row 4: 5 The rows ordered from weakest to strongest are [2,0,3,1,4]. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> mat = [[1,0,0,0], [1,1,1,1], [1,0,0,0], [1,0,0,0]], k = 2 <strong>Output:</strong> [0,2] <strong>Explanation:</strong> The number of soldiers in each row is: - Row 0: 1 - Row 1: 4 - Row 2: 1 - Row 3: 1 The rows ordered from weakest to strongest are [0,2,3,1]. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>m == mat.length</code></li> <li><code>n == mat[i].length</code></li> <li><code>2 <= n, m <= 100</code></li> <li><code>1 <= k <= m</code></li> <li><code>matrix[i][j]</code> is either 0 or 1.</li> </ul>