<p>Given an <code>n x n</code> binary matrix <code>grid</code>, return <em>the length of the shortest <strong>clear path</strong> in the matrix</em>. If there is no clear path, return <code>-1</code>.</p> <p>A <strong>clear path</strong> in a binary matrix is a path from the <strong>top-left</strong> cell (i.e., <code>(0, 0)</code>) to the <strong>bottom-right</strong> cell (i.e., <code>(n - 1, n - 1)</code>) such that:</p> <ul> <li>All the visited cells of the path are <code>0</code>.</li> <li>All the adjacent cells of the path are <strong>8-directionally</strong> connected (i.e., they are different and they share an edge or a corner).</li> </ul> <p>The <strong>length of a clear path</strong> is the number of visited cells of this path.</p> <p> </p> <p><strong>Example 1:</strong></p> <img alt="" src="https://assets.leetcode.com/uploads/2021/02/18/example1_1.png" style="width: 500px; height: 234px;" /> <pre> <strong>Input:</strong> grid = [[0,1],[1,0]] <strong>Output:</strong> 2 </pre> <p><strong>Example 2:</strong></p> <img alt="" src="https://assets.leetcode.com/uploads/2021/02/18/example2_1.png" style="height: 216px; width: 500px;" /> <pre> <strong>Input:</strong> grid = [[0,0,0],[1,1,0],[1,1,0]] <strong>Output:</strong> 4 </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> grid = [[1,0,0],[1,1,0],[1,1,0]] <strong>Output:</strong> -1 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == grid.length</code></li> <li><code>n == grid[i].length</code></li> <li><code>1 <= n <= 100</code></li> <li><code>grid[i][j] is 0 or 1</code></li> </ul>