<p>Given an integer n, return <em>the smallest <strong>prime palindrome</strong> greater than or equal to </em><code>n</code>.</p> <p>An integer is <strong>prime</strong> if it has exactly two divisors: <code>1</code> and itself. Note that <code>1</code> is not a prime number.</p> <ul> <li>For example, <code>2</code>, <code>3</code>, <code>5</code>, <code>7</code>, <code>11</code>, and <code>13</code> are all primes.</li> </ul> <p>An integer is a <strong>palindrome</strong> if it reads the same from left to right as it does from right to left.</p> <ul> <li>For example, <code>101</code> and <code>12321</code> are palindromes.</li> </ul> <p>The test cases are generated so that the answer always exists and is in the range <code>[2, 2 * 10<sup>8</sup>]</code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre><strong>Input:</strong> n = 6 <strong>Output:</strong> 7 </pre><p><strong>Example 2:</strong></p> <pre><strong>Input:</strong> n = 8 <strong>Output:</strong> 11 </pre><p><strong>Example 3:</strong></p> <pre><strong>Input:</strong> n = 13 <strong>Output:</strong> 101 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 10<sup>8</sup></code></li> </ul>