<p>There are <code>n</code> people and <code>40</code> types of hats labeled from <code>1</code> to <code>40</code>.</p> <p>Given a 2D integer array <code>hats</code>, where <code>hats[i]</code> is a list of all hats preferred by the <code>i<sup>th</sup></code> person.</p> <p>Return <em>the number of ways that the <code>n</code> people wear different hats to each other</em>.</p> <p>Since the answer may be too large, return it modulo <code>10<sup>9</sup> + 7</code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> hats = [[3,4],[4,5],[5]] <strong>Output:</strong> 1 <strong>Explanation:</strong> There is only one way to choose hats given the conditions. First person choose hat 3, Second person choose hat 4 and last one hat 5. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> hats = [[3,5,1],[3,5]] <strong>Output:</strong> 4 <strong>Explanation:</strong> There are 4 ways to choose hats: (3,5), (5,3), (1,3) and (1,5) </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> hats = [[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]] <strong>Output:</strong> 24 <strong>Explanation:</strong> Each person can choose hats labeled from 1 to 4. Number of Permutations of (1,2,3,4) = 24. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == hats.length</code></li> <li><code>1 <= n <= 10</code></li> <li><code>1 <= hats[i].length <= 40</code></li> <li><code>1 <= hats[i][j] <= 40</code></li> <li><code>hats[i]</code> contains a list of <strong>unique</strong> integers.</li> </ul>