<p>A <strong>swap</strong> is defined as taking two <strong>distinct</strong> positions in an array and swapping the values in them.</p> <p>A <strong>circular</strong> array is defined as an array where we consider the <strong>first</strong> element and the <strong>last</strong> element to be <strong>adjacent</strong>.</p> <p>Given a <strong>binary</strong> <strong>circular</strong> array <code>nums</code>, return <em>the minimum number of swaps required to group all </em><code>1</code><em>'s present in the array together at <strong>any location</strong></em>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,0,1,1,0,0] <strong>Output:</strong> 1 <strong>Explanation:</strong> Here are a few of the ways to group all the 1's together: [0,<u>0</u>,<u>1</u>,1,1,0,0] using 1 swap. [0,1,<u>1</u>,1,<u>0</u>,0,0] using 1 swap. [1,1,0,0,0,0,1] using 2 swaps (using the circular property of the array). There is no way to group all 1's together with 0 swaps. Thus, the minimum number of swaps required is 1. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,1,1,0,0,1,1,0] <strong>Output:</strong> 2 <strong>Explanation:</strong> Here are a few of the ways to group all the 1's together: [1,1,1,0,0,0,0,1,1] using 2 swaps (using the circular property of the array). [1,1,1,1,1,0,0,0,0] using 2 swaps. There is no way to group all 1's together with 0 or 1 swaps. Thus, the minimum number of swaps required is 2. </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,0,0,1] <strong>Output:</strong> 0 <strong>Explanation:</strong> All the 1's are already grouped together due to the circular property of the array. Thus, the minimum number of swaps required is 0. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> <li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li> </ul>