<p>Given the <code>root</code> of a binary tree, return <em>the <strong>maximum width</strong> of the given tree</em>.</p> <p>The <strong>maximum width</strong> of a tree is the maximum <strong>width</strong> among all levels.</p> <p>The <strong>width</strong> of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.</p> <p>It is <strong>guaranteed</strong> that the answer will in the range of a <strong>32-bit</strong> signed integer.</p> <p> </p> <p><strong>Example 1:</strong></p> <img alt="" src="https://assets.leetcode.com/uploads/2021/05/03/width1-tree.jpg" style="width: 359px; height: 302px;" /> <pre> <strong>Input:</strong> root = [1,3,2,5,3,null,9] <strong>Output:</strong> 4 <strong>Explanation:</strong> The maximum width exists in the third level with length 4 (5,3,null,9). </pre> <p><strong>Example 2:</strong></p> <img alt="" src="https://assets.leetcode.com/uploads/2022/03/14/maximum-width-of-binary-tree-v3.jpg" style="width: 442px; height: 422px;" /> <pre> <strong>Input:</strong> root = [1,3,2,5,null,null,9,6,null,7] <strong>Output:</strong> 7 <strong>Explanation:</strong> The maximum width exists in the fourth level with length 7 (6,null,null,null,null,null,7). </pre> <p><strong>Example 3:</strong></p> <img alt="" src="https://assets.leetcode.com/uploads/2021/05/03/width3-tree.jpg" style="width: 289px; height: 299px;" /> <pre> <strong>Input:</strong> root = [1,3,2,5] <strong>Output:</strong> 2 <strong>Explanation:</strong> The maximum width exists in the second level with length 2 (3,2). </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li>The number of nodes in the tree is in the range <code>[1, 3000]</code>.</li> <li><code>-100 <= Node.val <= 100</code></li> </ul>