<p>You are given <code>nums</code>, an array of positive integers of size <code>2 * n</code>. You must perform <code>n</code> operations on this array.</p> <p>In the <code>i<sup>th</sup></code> operation <strong>(1-indexed)</strong>, you will:</p> <ul> <li>Choose two elements, <code>x</code> and <code>y</code>.</li> <li>Receive a score of <code>i * gcd(x, y)</code>.</li> <li>Remove <code>x</code> and <code>y</code> from <code>nums</code>.</li> </ul> <p>Return <em>the maximum score you can receive after performing </em><code>n</code><em> operations.</em></p> <p>The function <code>gcd(x, y)</code> is the greatest common divisor of <code>x</code> and <code>y</code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2] <strong>Output:</strong> 1 <strong>Explanation:</strong> The optimal choice of operations is: (1 * gcd(1, 2)) = 1 </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [3,4,6,8] <strong>Output:</strong> 11 <strong>Explanation:</strong> The optimal choice of operations is: (1 * gcd(3, 6)) + (2 * gcd(4, 8)) = 3 + 8 = 11 </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3,4,5,6] <strong>Output:</strong> 14 <strong>Explanation:</strong> The optimal choice of operations is: (1 * gcd(1, 5)) + (2 * gcd(2, 4)) + (3 * gcd(3, 6)) = 1 + 4 + 9 = 14 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 7</code></li> <li><code>nums.length == 2 * n</code></li> <li><code>1 <= nums[i] <= 10<sup>6</sup></code></li> </ul>