<p>Given an array of positive integers <code>nums</code>, remove the <strong>smallest</strong> subarray (possibly <strong>empty</strong>) such that the <strong>sum</strong> of the remaining elements is divisible by <code>p</code>. It is <strong>not</strong> allowed to remove the whole array.</p> <p>Return <em>the length of the smallest subarray that you need to remove, or </em><code>-1</code><em> if it's impossible</em>.</p> <p>A <strong>subarray</strong> is defined as a contiguous block of elements in the array.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [3,1,4,2], p = 6 <strong>Output:</strong> 1 <strong>Explanation:</strong> The sum of the elements in nums is 10, which is not divisible by 6. We can remove the subarray [4], and the sum of the remaining elements is 6, which is divisible by 6. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [6,3,5,2], p = 9 <strong>Output:</strong> 2 <strong>Explanation:</strong> We cannot remove a single element to get a sum divisible by 9. The best way is to remove the subarray [5,2], leaving us with [6,3] with sum 9. </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], p = 3 <strong>Output:</strong> 0 <strong>Explanation:</strong> Here the sum is 6. which is already divisible by 3. Thus we do not need to remove anything. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> <li><code>1 <= nums[i] <= 10<sup>9</sup></code></li> <li><code>1 <= p <= 10<sup>9</sup></code></li> </ul>