<p>Given an integer array <code>nums</code>, return the length of the longest strictly increasing subsequence.</p> <p>A <strong>subsequence</strong> is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, <code>[3,6,2,7]</code> is a subsequence of the array <code>[0,3,1,6,2,2,7]</code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [10,9,2,5,3,7,101,18] <strong>Output:</strong> 4 <strong>Explanation:</strong> The longest increasing subsequence is [2,3,7,101], therefore the length is 4. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,0,3,2,3] <strong>Output:</strong> 4 </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [7,7,7,7,7,7,7] <strong>Output:</strong> 1 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 2500</code></li> <li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li> </ul> <p> </p> <p><b>Follow up:</b> Can you come up with an algorithm that runs in <code>O(n log(n))</code> time complexity?</p>