<p>You are given two arrays <code>rowSum</code> and <code>colSum</code> of non-negative integers where <code>rowSum[i]</code> is the sum of the elements in the <code>i<sup>th</sup></code> row and <code>colSum[j]</code> is the sum of the elements of the <code>j<sup>th</sup></code> column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.</p> <p>Find any matrix of <strong>non-negative</strong> integers of size <code>rowSum.length x colSum.length</code> that satisfies the <code>rowSum</code> and <code>colSum</code> requirements.</p> <p>Return <em>a 2D array representing <strong>any</strong> matrix that fulfills the requirements</em>. It's guaranteed that <strong>at least one </strong>matrix that fulfills the requirements exists.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> rowSum = [3,8], colSum = [4,7] <strong>Output:</strong> [[3,0], [1,7]] <strong>Explanation:</strong> 0<sup>th</sup> row: 3 + 0 = 3 == rowSum[0] 1<sup>st</sup> row: 1 + 7 = 8 == rowSum[1] 0<sup>th</sup> column: 3 + 1 = 4 == colSum[0] 1<sup>st</sup> column: 0 + 7 = 7 == colSum[1] The row and column sums match, and all matrix elements are non-negative. Another possible matrix is: [[1,2], [3,5]] </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> rowSum = [5,7,10], colSum = [8,6,8] <strong>Output:</strong> [[0,5,0], [6,1,0], [2,0,8]] </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= rowSum.length, colSum.length <= 500</code></li> <li><code>0 <= rowSum[i], colSum[i] <= 10<sup>8</sup></code></li> <li><code>sum(rows) == sum(columns)</code></li> </ul>