{ "data": { "question": { "questionId": "1456", "questionFrontendId": "1334", "boundTopicId": null, "title": "Find the City With the Smallest Number of Neighbors at a Threshold Distance", "titleSlug": "find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance", "content": "<p>There are <code>n</code> cities numbered from <code>0</code> to <code>n-1</code>. Given the array <code>edges</code> where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>, weight<sub>i</sub>]</code> represents a bidirectional and weighted edge between cities <code>from<sub>i</sub></code> and <code>to<sub>i</sub></code>, and given the integer <code>distanceThreshold</code>.</p>\n\n<p>Return the city with the smallest number of cities that are reachable through some path and whose distance is <strong>at most</strong> <code>distanceThreshold</code>, If there are multiple such cities, return the city with the greatest number.</p>\n\n<p>Notice that the distance of a path connecting cities <em><strong>i</strong></em> and <em><strong>j</strong></em> is equal to the sum of the edges' weights along that path.</p>\n\n<p> </p>\n<p><strong>Example 1:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2020/01/16/find_the_city_01.png\" style=\"width: 300px; height: 225px;\" />\n<pre>\n<strong>Input:</strong> n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4\n<strong>Output:</strong> 3\n<strong>Explanation: </strong>The figure above describes the graph. \nThe neighboring cities at a distanceThreshold = 4 for each city are:\nCity 0 -> [City 1, City 2] \nCity 1 -> [City 0, City 2, City 3] \nCity 2 -> [City 0, City 1, City 3] \nCity 3 -> [City 1, City 2] \nCities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.\n</pre>\n\n<p><strong>Example 2:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2020/01/16/find_the_city_02.png\" style=\"width: 300px; height: 225px;\" />\n<pre>\n<strong>Input:</strong> n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2\n<strong>Output:</strong> 0\n<strong>Explanation: </strong>The figure above describes the graph. \nThe neighboring cities at a distanceThreshold = 2 for each city are:\nCity 0 -> [City 1] \nCity 1 -> [City 0, City 4] \nCity 2 -> [City 3, City 4] \nCity 3 -> [City 2, City 4]\nCity 4 -> [City 1, City 2, City 3] \nThe city 0 has 1 neighboring city at a distanceThreshold = 2.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>2 <= n <= 100</code></li>\n\t<li><code>1 <= edges.length <= n * (n - 1) / 2</code></li>\n\t<li><code>edges[i].length == 3</code></li>\n\t<li><code>0 <= from<sub>i</sub> < to<sub>i</sub> < n</code></li>\n\t<li><code>1 <= weight<sub>i</sub>, distanceThreshold <= 10^4</code></li>\n\t<li>All pairs <code>(from<sub>i</sub>, to<sub>i</sub>)</code> are distinct.</li>\n</ul>\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 1089, "dislikes": 56, "isLiked": null, "similarQuestions": "[{\"title\": \"Second Minimum Time to Reach Destination\", \"titleSlug\": \"second-minimum-time-to-reach-destination\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "4\n[[0,1,3],[1,2,1],[1,3,4],[2,3,1]]\n4\n5\n[[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]]\n2", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Graph", "slug": "graph", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Shortest Path", "slug": "shortest-path", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int findTheCity(int n, int[][] edges, int distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def findTheCity(self, n, edges, distanceThreshold):\n \"\"\"\n :type n: int\n :type edges: List[List[int]]\n :type distanceThreshold: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint findTheCity(int n, int** edges, int edgesSize, int* edgesColSize, int distanceThreshold){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int FindTheCity(int n, int[][] edges, int distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} n\n * @param {number[][]} edges\n * @param {number} distanceThreshold\n * @return {number}\n */\nvar findTheCity = function(n, edges, distanceThreshold) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer} n\n# @param {Integer[][]} edges\n# @param {Integer} distance_threshold\n# @return {Integer}\ndef find_the_city(n, edges, distance_threshold)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func findTheCity(_ n: Int, _ edges: [[Int]], _ distanceThreshold: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func findTheCity(n int, edges [][]int, distanceThreshold int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def findTheCity(n: Int, edges: Array[Array[Int]], distanceThreshold: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun findTheCity(n: Int, edges: Array<IntArray>, distanceThreshold: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn find_the_city(n: i32, edges: Vec<Vec<i32>>, distance_threshold: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer[][] $edges\n * @param Integer $distanceThreshold\n * @return Integer\n */\n function findTheCity($n, $edges, $distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function findTheCity(n: number, edges: number[][], distanceThreshold: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (find-the-city n edges distanceThreshold)\n (-> exact-integer? (listof (listof exact-integer?)) exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec find_the_city(N :: integer(), Edges :: [[integer()]], DistanceThreshold :: integer()) -> integer().\nfind_the_city(N, Edges, DistanceThreshold) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec find_the_city(n :: integer, edges :: [[integer]], distance_threshold :: integer) :: integer\n def find_the_city(n, edges, distance_threshold) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"37.1K\", \"totalSubmission\": \"72.8K\", \"totalAcceptedRaw\": 37088, \"totalSubmissionRaw\": 72791, \"acRate\": \"51.0%\"}", "hints": [ "Use Floyd-Warshall's algorithm to compute any-point to any-point distances. (Or can also do Dijkstra from every node due to the weights are non-negative).", "For each city calculate the number of reachable cities within the threshold, then search for the optimal city." ], "solution": null, "status": null, "sampleTestCase": "4\n[[0,1,3],[1,2,1],[1,3,4],[2,3,1]]\n4", "metaData": "{\n \"name\": \"findTheCity\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"edges\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"distanceThreshold\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 17 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code> OpenJDK 17 </code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu99 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\\r\\n\\r\\n<p>Your code is compiled with debug flag enabled (<code>/debug</code>).</p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use <a href=\\\"https://github.com/datastructures-js/priority-queue\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and <a href=\\\"https://github.com/datastructures-js/queue\\\" target=\\\"_blank\\\">datastructures-js/queue</a>.</p>\"], \"ruby\": [\"Ruby\", \"<p><code>Ruby 3.1</code></p>\\r\\n\\r\\n<p>Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms</p>\"], \"swift\": [\"Swift\", \"<p><code>Swift 5.5.2</code>.</p>\"], \"golang\": [\"Go\", \"<p><code>Go 1.17.6</code>.</p>\\r\\n\\r\\n<p>Support <a href=\\\"https://godoc.org/github.com/emirpasic/gods\\\" target=\\\"_blank\\\">https://godoc.org/github.com/emirpasic/gods</a> library.</p>\"], \"python3\": [\"Python3\", \"<p><code>Python 3.10</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/3/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/3/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/3/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\"], \"scala\": [\"Scala\", \"<p><code>Scala 2.13.7</code>.</p>\"], \"kotlin\": [\"Kotlin\", \"<p><code>Kotlin 1.3.10</code>.</p>\"], \"rust\": [\"Rust\", \"<p><code>Rust 1.58.1</code></p>\\r\\n\\r\\n<p>Supports <a href=\\\"https://crates.io/crates/rand\\\" target=\\\"_blank\\\">rand </a> v0.6\\u00a0from crates.io</p>\"], \"php\": [\"PHP\", \"<p><code>PHP 8.1</code>.</p>\\r\\n<p>With bcmath module</p>\"], \"typescript\": [\"Typescript\", \"<p><code>TypeScript 4.5.4, Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES2020 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\"], \"racket\": [\"Racket\", \"<p>Run with <code>Racket 8.3</code>.</p>\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }