<p>Given two integers <code>dividend</code> and <code>divisor</code>, divide two integers <strong>without</strong> using multiplication, division, and mod operator.</p> <p>The integer division should truncate toward zero, which means losing its fractional part. For example, <code>8.345</code> would be truncated to <code>8</code>, and <code>-2.7335</code> would be truncated to <code>-2</code>.</p> <p>Return <em>the <strong>quotient</strong> after dividing </em><code>dividend</code><em> by </em><code>divisor</code>.</p> <p><strong>Note: </strong>Assume we are dealing with an environment that could only store integers within the <strong>32-bit</strong> signed integer range: <code>[−2<sup>31</sup>, 2<sup>31</sup> − 1]</code>. For this problem, if the quotient is <strong>strictly greater than</strong> <code>2<sup>31</sup> - 1</code>, then return <code>2<sup>31</sup> - 1</code>, and if the quotient is <strong>strictly less than</strong> <code>-2<sup>31</sup></code>, then return <code>-2<sup>31</sup></code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> dividend = 10, divisor = 3 <strong>Output:</strong> 3 <strong>Explanation:</strong> 10/3 = 3.33333.. which is truncated to 3. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> dividend = 7, divisor = -3 <strong>Output:</strong> -2 <strong>Explanation:</strong> 7/-3 = -2.33333.. which is truncated to -2. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>-2<sup>31</sup> <= dividend, divisor <= 2<sup>31</sup> - 1</code></li> <li><code>divisor != 0</code></li> </ul>