<p>A die simulator generates a random number from <code>1</code> to <code>6</code> for each roll. You introduced a constraint to the generator such that it cannot roll the number <code>i</code> more than <code>rollMax[i]</code> (<strong>1-indexed</strong>) consecutive times.</p> <p>Given an array of integers <code>rollMax</code> and an integer <code>n</code>, return <em>the number of distinct sequences that can be obtained with exact </em><code>n</code><em> rolls</em>. Since the answer may be too large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>Two sequences are considered different if at least one element differs from each other.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> n = 2, rollMax = [1,1,2,2,2,3] <strong>Output:</strong> 34 <strong>Explanation:</strong> There will be 2 rolls of die, if there are no constraints on the die, there are 6 * 6 = 36 possible combinations. In this case, looking at rollMax array, the numbers 1 and 2 appear at most once consecutively, therefore sequences (1,1) and (2,2) cannot occur, so the final answer is 36-2 = 34. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> n = 2, rollMax = [1,1,1,1,1,1] <strong>Output:</strong> 30 </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> n = 3, rollMax = [1,1,1,2,2,3] <strong>Output:</strong> 181 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 5000</code></li> <li><code>rollMax.length == 6</code></li> <li><code>1 <= rollMax[i] <= 15</code></li> </ul>