<p>Given an integer array <code>nums</code> and two integers <code>lower</code> and <code>upper</code>, return <em>the number of range sums that lie in</em> <code>[lower, upper]</code> <em>inclusive</em>.</p> <p>Range sum <code>S(i, j)</code> is defined as the sum of the elements in <code>nums</code> between indices <code>i</code> and <code>j</code> inclusive, where <code>i <= j</code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [-2,5,-1], lower = -2, upper = 2 <strong>Output:</strong> 3 <strong>Explanation:</strong> The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0], lower = 0, upper = 0 <strong>Output:</strong> 1 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> <li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li> <li><code>-10<sup>5</sup> <= lower <= upper <= 10<sup>5</sup></code></li> <li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit</strong> integer.</li> </ul>