<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if </em><code>nums</code><em> has a continuous subarray of size <strong>at least two</strong> whose elements sum up to a multiple of</em> <code>k</code><em>, or </em><code>false</code><em> otherwise</em>.</p> <p>An integer <code>x</code> is a multiple of <code>k</code> if there exists an integer <code>n</code> such that <code>x = n * k</code>. <code>0</code> is <strong>always</strong> a multiple of <code>k</code>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [23,<u>2,4</u>,6,7], k = 6 <strong>Output:</strong> true <strong>Explanation:</strong> [2, 4] is a continuous subarray of size 2 whose elements sum up to 6. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [<u>23,2,6,4,7</u>], k = 6 <strong>Output:</strong> true <strong>Explanation:</strong> [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42. 42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer. </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [23,2,6,4,7], k = 13 <strong>Output:</strong> false </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> <li><code>0 <= nums[i] <= 10<sup>9</sup></code></li> <li><code>0 <= sum(nums[i]) <= 2<sup>31</sup> - 1</code></li> <li><code>1 <= k <= 2<sup>31</sup> - 1</code></li> </ul>