<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>amount</code> representing a total amount of money.</p> <p>Return <em>the number of combinations that make up that amount</em>. If that amount of money cannot be made up by any combination of the coins, return <code>0</code>.</p> <p>You may assume that you have an infinite number of each kind of coin.</p> <p>The answer is <strong>guaranteed</strong> to fit into a signed <strong>32-bit</strong> integer.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> amount = 5, coins = [1,2,5] <strong>Output:</strong> 4 <strong>Explanation:</strong> there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> amount = 3, coins = [2] <strong>Output:</strong> 0 <strong>Explanation:</strong> the amount of 3 cannot be made up just with coins of 2. </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> amount = 10, coins = [10] <strong>Output:</strong> 1 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= coins.length <= 300</code></li> <li><code>1 <= coins[i] <= 5000</code></li> <li>All the values of <code>coins</code> are <strong>unique</strong>.</li> <li><code>0 <= amount <= 5000</code></li> </ul>