<p>Given an integer <code>num</code>, find the closest two integers in absolute difference whose product equals <code>num + 1</code> or <code>num + 2</code>.</p> <p>Return the two integers in any order.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> num = 8 <strong>Output:</strong> [3,3] <strong>Explanation:</strong> For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> num = 123 <strong>Output:</strong> [5,25] </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> num = 999 <strong>Output:</strong> [40,25] </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= num <= 10^9</code></li> </ul>