<p>Given an integer array <code>nums</code> of <code>2n</code> integers, group these integers into <code>n</code> pairs <code>(a<sub>1</sub>, b<sub>1</sub>), (a<sub>2</sub>, b<sub>2</sub>), ..., (a<sub>n</sub>, b<sub>n</sub>)</code> such that the sum of <code>min(a<sub>i</sub>, b<sub>i</sub>)</code> for all <code>i</code> is <strong>maximized</strong>. Return<em> the maximized sum</em>.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,4,3,2] <strong>Output:</strong> 4 <strong>Explanation:</strong> All possible pairings (ignoring the ordering of elements) are: 1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 So the maximum possible sum is 4.</pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [6,2,6,5,1,2] <strong>Output:</strong> 9 <strong>Explanation:</strong> The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 10<sup>4</sup></code></li> <li><code>nums.length == 2 * n</code></li> <li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li> </ul>