{ "data": { "question": { "questionId": "3063", "questionFrontendId": "2891", "categoryTitle": "pandas", "boundTopicId": 2467482, "title": "Method Chaining", "titleSlug": "method-chaining", "content": "
\nDataFrame animals
\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| name | object |\n| species | object |\n| age | int |\n| weight | int |\n+-------------+--------+\n
\n\nWrite a solution to list the names of animals that weigh strictly more than 100
kilograms.
Return the animals sorted by weight in descending order.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput: \nDataFrame animals:\n+----------+---------+-----+--------+\n| name | species | age | weight |\n+----------+---------+-----+--------+\n| Tatiana | Snake | 98 | 464 |\n| Khaled | Giraffe | 50 | 41 |\n| Alex | Leopard | 6 | 328 |\n| Jonathan | Monkey | 45 | 463 |\n| Stefan | Bear | 100 | 50 |\n| Tommy | Panda | 26 | 349 |\n+----------+---------+-----+--------+\nOutput: \n+----------+\n| name |\n+----------+\n| Tatiana |\n| Jonathan |\n| Tommy |\n| Alex |\n+----------+\nExplanation: \nAll animals weighing more than 100 should be included in the results table.\nTatiana's weight is 464, Jonathan's weight is 463, Tommy's weight is 349, and Alex's weight is 328.\nThe results should be sorted in descending order of weight.\n\n
\n
In Pandas, method chaining enables us to perform operations on a DataFrame without breaking up each operation into a separate line or creating multiple temporary variables.
\n\nCan you complete this task in just one line of code using method chaining?
\n", "translatedTitle": "方法链", "translatedContent": "\nDataFrame animals
\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| name | object |\n| species | object |\n| age | int |\n| weight | int |\n+-------------+--------+\n
\n\n编写一个解决方案来列出体重 严格超过 100
千克的动物的名称。
按体重 降序 返回动物。
\n\n返回结果格式如下示例所示。
\n\n\n\n
示例 1:
\n\n\n输入:\nDataFrame animals:\n+----------+---------+-----+--------+\n| name | species | age | weight |\n+----------+---------+-----+--------+\n| Tatiana | Snake | 98 | 464 |\n| Khaled | Giraffe | 50 | 41 |\n| Alex | Leopard | 6 | 328 |\n| Jonathan | Monkey | 45 | 463 |\n| Stefan | Bear | 100 | 50 |\n| Tommy | Panda | 26 | 349 |\n+----------+---------+-----+--------+\n输出:\n+----------+\n| name |\n+----------+\n| Tatiana |\n| Jonathan |\n| Tommy |\n| Alex |\n+----------+\n解释:\n所有体重超过 100 的动物都应包含在结果表中。\nTatiana 的体重为 464,Jonathan 的体重为 463,Tommy 的体重为 349,Alex 的体重为 328。\n结果应按体重降序排序。\n\n
\n\n
在 Pandas 中,方法链 允许我们在 DataFrame 上执行操作,而无需将每个操作拆分成单独的行或创建多个临时变量。
\n\n你能用 一行 代码的方法链完成这个任务吗?
\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 1, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef findHeavyAnimals(animals: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.2K\", \"totalSubmission\": \"1.6K\", \"totalAcceptedRaw\": 1184, \"totalSubmissionRaw\": 1603, \"acRate\": \"73.9%\"}", "hints": [], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"animals\":[\"name\",\"species\",\"age\",\"weight\"]},\"rows\":{\"animals\":[[\"Tatiana\",\"Snake\",98,464],[\"Khaled\",\"Giraffe\",50,41],[\"Alex\",\"Leopard\",6,328],[\"Jonathan\",\"Monkey\",45,463],[\"Stefan\",\"Bear\",100,50],[\"Tommy\",\"Panda\",26,349]]}}", "metaData": "{\n \"pythondata\": [\n \"animals = pd.DataFrame([], columns=['name', 'species', 'age', 'weight']).astype({'name':'object', 'species':'object', 'age':'Int64', 'weight':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"findHeavyAnimals\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"pythondata\":[\"Pandas\",\"Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"animals\":[\"name\",\"species\",\"age\",\"weight\"]},\"rows\":{\"animals\":[[\"Tatiana\",\"Snake\",98,464],[\"Khaled\",\"Giraffe\",50,41],[\"Alex\",\"Leopard\",6,328],[\"Jonathan\",\"Monkey\",45,463],[\"Stefan\",\"Bear\",100,50],[\"Tommy\",\"Panda\",26,349]]}}", "__typename": "QuestionNode" } } }