{ "data": { "question": { "questionId": "638", "questionFrontendId": "638", "boundTopicId": null, "title": "Shopping Offers", "titleSlug": "shopping-offers", "content": "
In LeetCode Store, there are n
items to sell. Each item has a price. However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price.
You are given an integer array price
where price[i]
is the price of the ith
item, and an integer array needs
where needs[i]
is the number of pieces of the ith
item you want to buy.
You are also given an array special
where special[i]
is of size n + 1
where special[i][j]
is the number of pieces of the jth
item in the ith
offer and special[i][n]
(i.e., the last integer in the array) is the price of the ith
offer.
Return the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers. You are not allowed to buy more items than you want, even if that would lower the overall price. You could use any of the special offers as many times as you want.
\n\n\n
Example 1:
\n\n\nInput: price = [2,5], special = [[3,0,5],[1,2,10]], needs = [3,2]\nOutput: 14\nExplanation: There are two kinds of items, A and B. Their prices are $2 and $5 respectively. \nIn special offer 1, you can pay $5 for 3A and 0B\nIn special offer 2, you can pay $10 for 1A and 2B. \nYou need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A.\n\n\n
Example 2:
\n\n\nInput: price = [2,3,4], special = [[1,1,0,4],[2,2,1,9]], needs = [1,2,1]\nOutput: 11\nExplanation: The price of A is $2, and $3 for B, $4 for C. \nYou may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C. \nYou need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C. \nYou cannot add more items, though only $9 for 2A ,2B and 1C.\n\n\n
\n
Constraints:
\n\nn == price.length
n == needs.length
1 <= n <= 6
0 <= price[i] <= 10
0 <= needs[i] <= 10
1 <= special.length <= 100
special[i].length == n + 1
0 <= special[i][j] <= 50
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.