{ "data": { "question": { "questionId": "1477", "questionFrontendId": "1352", "boundTopicId": null, "title": "Product of the Last K Numbers", "titleSlug": "product-of-the-last-k-numbers", "content": "
Design an algorithm that accepts a stream of integers and retrieves the product of the last k
integers of the stream.
Implement the ProductOfNumbers
class:
ProductOfNumbers()
Initializes the object with an empty stream.void add(int num)
Appends the integer num
to the stream.int getProduct(int k)
Returns the product of the last k
numbers in the current list. You can assume that always the current list has at least k
numbers.The test cases are generated so that, at any time, the product of any contiguous sequence of numbers will fit into a single 32-bit integer without overflowing.
\n\n\n
Example:
\n\n\nInput\n["ProductOfNumbers","add","add","add","add","add","getProduct","getProduct","getProduct","add","getProduct"]\n[[],[3],[0],[2],[5],[4],[2],[3],[4],[8],[2]]\n\nOutput\n[null,null,null,null,null,null,20,40,0,null,32]\n\nExplanation\nProductOfNumbers productOfNumbers = new ProductOfNumbers();\nproductOfNumbers.add(3); // [3]\nproductOfNumbers.add(0); // [3,0]\nproductOfNumbers.add(2); // [3,0,2]\nproductOfNumbers.add(5); // [3,0,2,5]\nproductOfNumbers.add(4); // [3,0,2,5,4]\nproductOfNumbers.getProduct(2); // return 20. The product of the last 2 numbers is 5 * 4 = 20\nproductOfNumbers.getProduct(3); // return 40. The product of the last 3 numbers is 2 * 5 * 4 = 40\nproductOfNumbers.getProduct(4); // return 0. The product of the last 4 numbers is 0 * 2 * 5 * 4 = 0\nproductOfNumbers.add(8); // [3,0,2,5,4,8]\nproductOfNumbers.getProduct(2); // return 32. The product of the last 2 numbers is 4 * 8 = 32 \n\n\n
\n
Constraints:
\n\n0 <= num <= 100
1 <= k <= 4 * 104
4 * 104
calls will be made to add
and getProduct
.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.