{ "data": { "question": { "questionId": "2108", "questionFrontendId": "1981", "boundTopicId": null, "title": "Minimize the Difference Between Target and Chosen Elements", "titleSlug": "minimize-the-difference-between-target-and-chosen-elements", "content": "

You are given an m x n integer matrix mat and an integer target.

\n\n

Choose one integer from each row in the matrix such that the absolute difference between target and the sum of the chosen elements is minimized.

\n\n

Return the minimum absolute difference.

\n\n

The absolute difference between two numbers a and b is the absolute value of a - b.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: mat = [[1,2,3],[4,5,6],[7,8,9]], target = 13\nOutput: 0\nExplanation: One possible choice is to:\n- Choose 1 from the first row.\n- Choose 5 from the second row.\n- Choose 7 from the third row.\nThe sum of the chosen elements is 13, which equals the target, so the absolute difference is 0.\n
\n\n

Example 2:

\n\"\"\n
\nInput: mat = [[1],[2],[3]], target = 100\nOutput: 94\nExplanation: The best possible choice is to:\n- Choose 1 from the first row.\n- Choose 2 from the second row.\n- Choose 3 from the third row.\nThe sum of the chosen elements is 6, and the absolute difference is 94.\n
\n\n

Example 3:

\n\"\"\n
\nInput: mat = [[1,2,9,8,7]], target = 6\nOutput: 1\nExplanation: The best choice is to choose 7 from the first row.\nThe absolute difference is 1.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 460, "dislikes": 85, "isLiked": null, "similarQuestions": "[{\"title\": \"Partition Equal Subset Sum\", \"titleSlug\": \"partition-equal-subset-sum\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Closest Subsequence Sum\", \"titleSlug\": \"closest-subsequence-sum\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Maximum Number of Points with Cost\", \"titleSlug\": \"maximum-number-of-points-with-cost\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[[1,2,3],[4,5,6],[7,8,9]]\n13\n[[1],[2],[3]]\n100\n[[1,2,9,8,7]]\n6", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Matrix", "slug": "matrix", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minimizeTheDifference(vector>& mat, int target) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minimizeTheDifference(int[][] mat, int target) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minimizeTheDifference(self, mat, target):\n \"\"\"\n :type mat: List[List[int]]\n :type target: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minimizeTheDifference(self, mat: List[List[int]], target: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint minimizeTheDifference(int** mat, int matSize, int* matColSize, int target){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinimizeTheDifference(int[][] mat, int target) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} mat\n * @param {number} target\n * @return {number}\n */\nvar minimizeTheDifference = function(mat, target) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} mat\n# @param {Integer} target\n# @return {Integer}\ndef minimize_the_difference(mat, target)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minimizeTheDifference(_ mat: [[Int]], _ target: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minimizeTheDifference(mat [][]int, target int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minimizeTheDifference(mat: Array[Array[Int]], target: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minimizeTheDifference(mat: Array, target: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn minimize_the_difference(mat: Vec>, target: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $mat\n * @param Integer $target\n * @return Integer\n */\n function minimizeTheDifference($mat, $target) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minimizeTheDifference(mat: number[][], target: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (minimize-the-difference mat target)\n (-> (listof (listof exact-integer?)) exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec minimize_the_difference(Mat :: [[integer()]], Target :: integer()) -> integer().\nminimize_the_difference(Mat, Target) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec minimize_the_difference(mat :: [[integer]], target :: integer) :: integer\n def minimize_the_difference(mat, target) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"14.4K\", \"totalSubmission\": \"43.9K\", \"totalAcceptedRaw\": 14376, \"totalSubmissionRaw\": 43915, \"acRate\": \"32.7%\"}", "hints": [ "The sum of chosen elements will not be too large. Consider using a hash set to record all possible sums while iterating each row.", "Instead of keeping track of all possible sums, since in each row, we are adding positive numbers, only keep those that can be a candidate, not exceeding the target by too much." ], "solution": null, "status": null, "sampleTestCase": "[[1,2,3],[4,5,6],[7,8,9]]\n13", "metaData": "{\n \"name\": \"minimizeTheDifference\",\n \"params\": [\n {\n \"name\": \"mat\",\n \"type\": \"integer[][]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"target\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }