You are given two strings of the same length s1
and s2
and a string baseStr
.
We say s1[i]
and s2[i]
are equivalent characters.
s1 = "abc"
and s2 = "cde"
, then we have 'a' == 'c'
, 'b' == 'd'
, and 'c' == 'e'
.Equivalent characters follow the usual rules of any equivalence relation:
'a' == 'a'
.'a' == 'b'
implies 'b' == 'a'
.'a' == 'b'
and 'b' == 'c'
implies 'a' == 'c'
.For example, given the equivalency information from s1 = "abc"
and s2 = "cde"
, "acd"
and "aab"
are equivalent strings of baseStr = "eed"
, and "aab"
is the lexicographically smallest equivalent string of baseStr
.
Return the lexicographically smallest equivalent string of baseStr
by using the equivalency information from s1
and s2
.
Example 1:
Input: s1 = "parker", s2 = "morris", baseStr = "parser" Output: "makkek" Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [m,p], [a,o], [k,r,s], [e,i]. The characters in each group are equivalent and sorted in lexicographical order. So the answer is "makkek".
Example 2:
Input: s1 = "hello", s2 = "world", baseStr = "hold" Output: "hdld" Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [h,w], [d,e,o], [l,r]. So only the second letter 'o' in baseStr is changed to 'd', the answer is "hdld".
Example 3:
Input: s1 = "leetcode", s2 = "programs", baseStr = "sourcecode" Output: "aauaaaaada" Explanation: We group the equivalent characters in s1 and s2 as [a,o,e,r,s,c], [l,p], [g,t] and [d,m], thus all letters in baseStr except 'u' and 'd' are transformed to 'a', the answer is "aauaaaaada".
Constraints:
1 <= s1.length, s2.length, baseStr <= 1000
s1.length == s2.length
s1
, s2
, and baseStr
consist of lowercase English letters.