{ "data": { "question": { "questionId": "3589", "questionFrontendId": "3278", "categoryTitle": "Database", "boundTopicId": 2900887, "title": "Find Candidates for Data Scientist Position II", "titleSlug": "find-candidates-for-data-scientist-position-ii", "content": null, "translatedTitle": "寻找数据科学家职位的候选人 II", "translatedContent": null, "isPaidOnly": true, "difficulty": "Medium", "likes": 1, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": null, "topicTags": [ { "name": "Database", "slug": "database", "translatedName": "数据库", "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": null, "stats": "{\"totalAccepted\": \"206\", \"totalSubmission\": \"424\", \"totalAcceptedRaw\": 206, \"totalSubmissionRaw\": 424, \"acRate\": \"48.6%\"}", "hints": [], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\",\"proficiency\"],\"Projects\":[\"project_id\",\"skill\",\"importance\"]},\"rows\":{\"Candidates\":[[101,\"Python\",5],[101,\"Tableau\",3],[101,\"PostgreSQL\",4],[101,\"TensorFlow\",2],[102,\"Python\",4],[102,\"Tableau\",5],[102,\"PostgreSQL\",4],[102,\"R\",4],[103,\"Python\",3],[103,\"Tableau\",5],[103,\"PostgreSQL\",5],[103,\"Spark\",4]],\"Projects\":[[501,\"Python\",4],[501,\"Tableau\",3],[501,\"PostgreSQL\",5],[502,\"Python\",3],[502,\"Tableau\",4],[502,\"R\",2]]}}", "metaData": "{\"mysql\":[\"Create table if not exists Candidates(candidate_id int, skill varchar(50), proficiency int)\",\"Create table if not exists Projects( project_id int, skill varchar(50), importance int)\"],\"mssql\":[\"Create table Candidates(candidate_id int, skill varchar(50), proficiency int)\",\"Create table Projects( project_id int, skill varchar(50), importance int)\"],\"oraclesql\":[\"Create table Candidates(candidate_id number, skill varchar2(50), proficiency number)\",\"Create table Projects(project_id number, skill varchar2(50), importance number)\"],\"database\":true,\"name\":\"find_best_candidates\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Candidates (\\n candidate_id INT,\\n skill VARCHAR(50),\\n proficiency INT\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Projects (\\n project_id INT,\\n skill VARCHAR(50),\\n importance INT\\n);\\n\"],\"pythondata\":[\"Candidates = pd.DataFrame({\\n 'candidate_id': pd.Series(dtype='int'),\\n 'skill': pd.Series(dtype='str'),\\n 'proficiency': pd.Series(dtype='int')\\n})\",\"Projects = pd.DataFrame({\\n 'project_id': pd.Series(dtype='int'),\\n 'skill': pd.Series(dtype='str'),\\n 'importance': pd.Series(dtype='int')\\n})\"],\"database_schema\":{\"Candidates\":{\"candidate_id\":\"INT\",\"skill\":\"VARCHAR(50)\",\"proficiency\":\"INT\"},\"Projects\":{\"project_id\":\"INT\",\"skill\":\"VARCHAR(50)\",\"importance\":\"INT\"}}}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [ "Create table if not exists Candidates(candidate_id int, skill varchar(50), proficiency int)", "Create table if not exists Projects( project_id int, skill varchar(50), importance int)", "Truncate table Candidates", "insert into Candidates (candidate_id, skill, proficiency) values ('101', 'Python', '5')", "insert into Candidates (candidate_id, skill, proficiency) values ('101', 'Tableau', '3')", "insert into Candidates (candidate_id, skill, proficiency) values ('101', 'PostgreSQL', '4')", "insert into Candidates (candidate_id, skill, proficiency) values ('101', 'TensorFlow', '2')", "insert into Candidates (candidate_id, skill, proficiency) values ('102', 'Python', '4')", "insert into Candidates (candidate_id, skill, proficiency) values ('102', 'Tableau', '5')", "insert into Candidates (candidate_id, skill, proficiency) values ('102', 'PostgreSQL', '4')", "insert into Candidates (candidate_id, skill, proficiency) values ('102', 'R', '4')", "insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Python', '3')", "insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Tableau', '5')", "insert into Candidates (candidate_id, skill, proficiency) values ('103', 'PostgreSQL', '5')", "insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Spark', '4')", "Truncate table Projects", "insert into Projects (project_id, skill, importance) values ('501', 'Python', '4')", "insert into Projects (project_id, skill, importance) values ('501', 'Tableau', '3')", "insert into Projects (project_id, skill, importance) values ('501', 'PostgreSQL', '5')", "insert into Projects (project_id, skill, importance) values ('502', 'Python', '3')", "insert into Projects (project_id, skill, importance) values ('502', 'Tableau', '4')", "insert into Projects (project_id, skill, importance) values ('502', 'R', '2')" ], "enableRunCode": true, "envInfo": "{\"mysql\":[\"MySQL\",\"
\\u7248\\u672c\\uff1a mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\" Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\" Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\" PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\",\"proficiency\"],\"Projects\":[\"project_id\",\"skill\",\"importance\"]},\"rows\":{\"Candidates\":[[101,\"Python\",5],[101,\"Tableau\",3],[101,\"PostgreSQL\",4],[101,\"TensorFlow\",2],[102,\"Python\",4],[102,\"Tableau\",5],[102,\"PostgreSQL\",4],[102,\"R\",4],[103,\"Python\",3],[103,\"Tableau\",5],[103,\"PostgreSQL\",5],[103,\"Spark\",4]],\"Projects\":[[501,\"Python\",4],[501,\"Tableau\",3],[501,\"PostgreSQL\",5],[502,\"Python\",3],[502,\"Tableau\",4],[502,\"R\",2]]}}",
"__typename": "QuestionNode"
}
}
}MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"