You are given a positive integer n
, that is initially placed on a board. Every day, for 109
days, you perform the following procedure:
x
present on the board, find all numbers 1 <= i <= n
such that x % i == 1
.Return the number of distinct integers present on the board after 109
days have elapsed.
Note:
%
stands for the modulo operation. For example, 14 % 3
is 2
.
Example 1:
Input: n = 5 Output: 4 Explanation: Initially, 5 is present on the board. The next day, 2 and 4 will be added since 5 % 2 == 1 and 5 % 4 == 1. After that day, 3 will be added to the board because 4 % 3 == 1. At the end of a billion days, the distinct numbers on the board will be 2, 3, 4, and 5.
Example 2:
Input: n = 3 Output: 2 Explanation: Since 3 % 2 == 1, 2 will be added to the board. After a billion days, the only two distinct numbers on the board are 2 and 3.
Constraints:
1 <= n <= 100