{ "data": { "question": { "questionId": "3151", "questionFrontendId": "2895", "boundTopicId": null, "title": "Minimum Processing Time", "titleSlug": "minimum-processing-time", "content": "

You have n processors each having 4 cores and n * 4 tasks that need to be executed such that each core should perform only one task.

\n\n

Given a 0-indexed integer array processorTime representing the time at which each processor becomes available for the first time and a 0-indexed integer array tasks representing the time it takes to execute each task, return the minimum time when all of the tasks have been executed by the processors.

\n\n

Note: Each core executes the task independently of the others.

\n\n

 

\n

Example 1:

\n\n
\nInput: processorTime = [8,10], tasks = [2,2,3,1,8,7,4,5]\nOutput: 16\nExplanation: \nIt's optimal to assign the tasks at indexes 4, 5, 6, 7 to the first processor which becomes available at time = 8, and the tasks at indexes 0, 1, 2, 3 to the second processor which becomes available at time = 10. \nTime taken by the first processor to finish execution of all tasks = max(8 + 8, 8 + 7, 8 + 4, 8 + 5) = 16.\nTime taken by the second processor to finish execution of all tasks = max(10 + 2, 10 + 2, 10 + 3, 10 + 1) = 13.\nHence, it can be shown that the minimum time taken to execute all the tasks is 16.
\n\n

Example 2:

\n\n
\nInput: processorTime = [10,20], tasks = [2,3,1,2,5,8,4,3]\nOutput: 23\nExplanation: \nIt's optimal to assign the tasks at indexes 1, 4, 5, 6 to the first processor which becomes available at time = 10, and the tasks at indexes 0, 2, 3, 7 to the second processor which becomes available at time = 20.\nTime taken by the first processor to finish execution of all tasks = max(10 + 3, 10 + 5, 10 + 8, 10 + 4) = 18.\nTime taken by the second processor to finish execution of all tasks = max(20 + 2, 20 + 1, 20 + 2, 20 + 3) = 23.\nHence, it can be shown that the minimum time taken to execute all the tasks is 23.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 98, "dislikes": 17, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[8,10]\n[2,2,3,1,8,7,4,5]\n[10,20]\n[2,3,1,2,5,8,4,3]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minProcessingTime(vector& processorTime, vector& tasks) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minProcessingTime(List processorTime, List tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minProcessingTime(self, processorTime, tasks):\n \"\"\"\n :type processorTime: List[int]\n :type tasks: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minProcessingTime(self, processorTime: List[int], tasks: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int minProcessingTime(int* processorTime, int processorTimeSize, int* tasks, int tasksSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinProcessingTime(IList processorTime, IList tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} processorTime\n * @param {number[]} tasks\n * @return {number}\n */\nvar minProcessingTime = function(processorTime, tasks) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minProcessingTime(processorTime: number[], tasks: number[]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $processorTime\n * @param Integer[] $tasks\n * @return Integer\n */\n function minProcessingTime($processorTime, $tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minProcessingTime(_ processorTime: [Int], _ tasks: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minProcessingTime(processorTime: List, tasks: List): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int minProcessingTime(List processorTime, List tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minProcessingTime(processorTime []int, tasks []int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} processor_time\n# @param {Integer[]} tasks\n# @return {Integer}\ndef min_processing_time(processor_time, tasks)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minProcessingTime(processorTime: List[Int], tasks: List[Int]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn min_processing_time(processor_time: Vec, tasks: Vec) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (min-processing-time processorTime tasks)\n (-> (listof exact-integer?) (listof exact-integer?) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec min_processing_time(ProcessorTime :: [integer()], Tasks :: [integer()]) -> integer().\nmin_processing_time(ProcessorTime, Tasks) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec min_processing_time(processor_time :: [integer], tasks :: [integer]) :: integer\n def min_processing_time(processor_time, tasks) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"23.8K\", \"totalSubmission\": \"35.4K\", \"totalAcceptedRaw\": 23838, \"totalSubmissionRaw\": 35449, \"acRate\": \"67.2%\"}", "hints": [ "It’s optimal to make the processor with earlier process time run 4 longer tasks.****", "The largest processTime[i] + tasks[j] (when matched) is the answer." ], "solution": null, "status": null, "sampleTestCase": "[8,10]\n[2,2,3,1,8,7,4,5]", "metaData": "{\n \"name\": \"minProcessingTime\",\n \"params\": [\n {\n \"name\": \"processorTime\",\n \"type\": \"list\"\n },\n {\n \"type\": \"list\",\n \"name\": \"tasks\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.18

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }