<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>'s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p> </p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0's in the following way: - Replace the two 0's in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums1.length, nums2.length <= 10<sup>5</sup></code></li> <li><code>0 <= nums1[i], nums2[i] <= 10<sup>6</sup></code></li> </ul>