我们对 0
到 255
之间的整数进行采样,并将结果存储在数组 count
中:count[k]
就是整数 k
在样本中出现的次数。
计算以下统计数据:
minimum
:样本中的最小元素。maximum
:样品中的最大元素。mean
:样本的平均值,计算为所有元素的总和除以元素总数。median
:
median
就是中间的元素。median
就是样本排序后中间两个元素的平均值。mode
:样本中出现次数最多的数字。保众数是 唯一 的。以浮点数数组的形式返回样本的统计信息 [minimum, maximum, mean, median, mode]
。与真实答案误差在 10-5
内的答案都可以通过。
示例 1:
输入:count = [0,1,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 输出:[1.00000,3.00000,2.37500,2.50000,3.00000] 解释:用count表示的样本为[1,2,2,2,3,3,3,3,3]。 最小值和最大值分别为1和3。 均值是(1+2+2+2+3+3+3+3) / 8 = 19 / 8 = 2.375。 因为样本的大小是偶数,所以中位数是中间两个元素2和3的平均值,也就是2.5。 众数为3,因为它在样本中出现的次数最多。
示例 2:
输入:count = [0,4,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 输出:[1.00000,4.00000,2.18182,2.00000,1.00000] 解释:用count表示的样本为[1,1,1,1,2,2,3,3,3,4,4]。 最小值为1,最大值为4。 平均数是(1+1+1+1+2+2+2+3+3+4+4)/ 11 = 24 / 11 = 2.18181818…(为了显示,输出显示了整数2.18182)。 因为样本的大小是奇数,所以中值是中间元素2。 众数为1,因为它在样本中出现的次数最多。
提示:
count.length == 256
0 <= count[i] <= 109
1 <= sum(count) <= 109
count
的众数是 唯一 的