{ "data": { "question": { "questionId": "2188", "questionFrontendId": "2064", "boundTopicId": null, "title": "Minimized Maximum of Products Distributed to Any Store", "titleSlug": "minimized-maximum-of-products-distributed-to-any-store", "content": "

You are given an integer n indicating there are n specialty retail stores. There are m product types of varying amounts, which are given as a 0-indexed integer array quantities, where quantities[i] represents the number of products of the ith product type.

\n\n

You need to distribute all products to the retail stores following these rules:

\n\n\n\n

Return the minimum possible x.

\n\n

 

\n

Example 1:

\n\n
\nInput: n = 6, quantities = [11,6]\nOutput: 3\nExplanation: One optimal way is:\n- The 11 products of type 0 are distributed to the first four stores in these amounts: 2, 3, 3, 3\n- The 6 products of type 1 are distributed to the other two stores in these amounts: 3, 3\nThe maximum number of products given to any store is max(2, 3, 3, 3, 3, 3) = 3.\n
\n\n

Example 2:

\n\n
\nInput: n = 7, quantities = [15,10,10]\nOutput: 5\nExplanation: One optimal way is:\n- The 15 products of type 0 are distributed to the first three stores in these amounts: 5, 5, 5\n- The 10 products of type 1 are distributed to the next two stores in these amounts: 5, 5\n- The 10 products of type 2 are distributed to the last two stores in these amounts: 5, 5\nThe maximum number of products given to any store is max(5, 5, 5, 5, 5, 5, 5) = 5.\n
\n\n

Example 3:

\n\n
\nInput: n = 1, quantities = [100000]\nOutput: 100000\nExplanation: The only optimal way is:\n- The 100000 products of type 0 are distributed to the only store.\nThe maximum number of products given to any store is max(100000) = 100000.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 380, "dislikes": 15, "isLiked": null, "similarQuestions": "[{\"title\": \"Koko Eating Bananas\", \"titleSlug\": \"koko-eating-bananas\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Capacity To Ship Packages Within D Days\", \"titleSlug\": \"capacity-to-ship-packages-within-d-days\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Find the Smallest Divisor Given a Threshold\", \"titleSlug\": \"find-the-smallest-divisor-given-a-threshold\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Magnetic Force Between Two Balls\", \"titleSlug\": \"magnetic-force-between-two-balls\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Minimum Limit of Balls in a Bag\", \"titleSlug\": \"minimum-limit-of-balls-in-a-bag\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Minimum Time to Complete Trips\", \"titleSlug\": \"minimum-time-to-complete-trips\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "6\n[11,6]\n7\n[15,10,10]\n1\n[100000]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minimizedMaximum(int n, vector& quantities) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minimizedMaximum(int n, int[] quantities) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minimizedMaximum(self, n, quantities):\n \"\"\"\n :type n: int\n :type quantities: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minimizedMaximum(self, n: int, quantities: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint minimizedMaximum(int n, int* quantities, int quantitiesSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinimizedMaximum(int n, int[] quantities) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} n\n * @param {number[]} quantities\n * @return {number}\n */\nvar minimizedMaximum = function(n, quantities) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer} n\n# @param {Integer[]} quantities\n# @return {Integer}\ndef minimized_maximum(n, quantities)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minimizedMaximum(_ n: Int, _ quantities: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minimizedMaximum(n int, quantities []int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minimizedMaximum(n: Int, quantities: Array[Int]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minimizedMaximum(n: Int, quantities: IntArray): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn minimized_maximum(n: i32, quantities: Vec) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer[] $quantities\n * @return Integer\n */\n function minimizedMaximum($n, $quantities) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minimizedMaximum(n: number, quantities: number[]): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (minimized-maximum n quantities)\n (-> exact-integer? (listof exact-integer?) exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec minimized_maximum(N :: integer(), Quantities :: [integer()]) -> integer().\nminimized_maximum(N, Quantities) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec minimized_maximum(n :: integer, quantities :: [integer]) :: integer\n def minimized_maximum(n, quantities) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"10.8K\", \"totalSubmission\": \"22.3K\", \"totalAcceptedRaw\": 10787, \"totalSubmissionRaw\": 22316, \"acRate\": \"48.3%\"}", "hints": [ "There exists a monotonic nature such that when x is smaller than some number, there will be no way to distribute, and when x is not smaller than that number, there will always be a way to distribute.", "If you are given a number k, where the number of products given to any store does not exceed k, could you determine if all products can be distributed?", "Implement a function canDistribute(k), which returns true if you can distribute all products such that any store will not be given more than k products, and returns false if you cannot. Use this function to binary search for the smallest possible k." ], "solution": null, "status": null, "sampleTestCase": "6\n[11,6]", "metaData": "{\n \"name\": \"minimizedMaximum\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"quantities\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }