给你一个下标从 0 开始长度为 n 的整数数组 nums 和两个  整数 k 和 dist 。

一个数组的 代价 是数组中的 第一个 元素。比方说,[1,2,3] 的代价为 1 ,[3,4,1] 的代价为 3 。

你需要将 nums 分割成 k 个 连续且互不相交 的子数组,满足 第二 个子数组与第 k 个子数组中第一个元素的下标距离 不超过 dist 。换句话说,如果你将 nums 分割成子数组 nums[0..(i1 - 1)], nums[i1..(i2 - 1)], ..., nums[ik-1..(n - 1)] ,那么它需要满足 ik-1 - i1 <= dist 。

请你返回这些子数组的 最小 总代价。

 

示例 1:

输入:nums = [1,3,2,6,4,2], k = 3, dist = 3
输出:5
解释:将数组分割成 3 个子数组的最优方案是:[1,3] ,[2,6,4] 和 [2] 。这是一个合法分割,因为 ik-1 - i1 等于 5 - 2 = 3 ,等于 dist 。总代价为 nums[0] + nums[2] + nums[5] ,也就是 1 + 2 + 2 = 5 。
5 是分割成 3 个子数组的最小总代价。

示例 2:

输入:nums = [10,1,2,2,2,1], k = 4, dist = 3
输出:15
解释:将数组分割成 4 个子数组的最优方案是:[10] ,[1] ,[2] 和 [2,2,1] 。这是一个合法分割,因为 ik-1 - i1 等于 3 - 1 = 2 ,小于 dist 。总代价为 nums[0] + nums[1] + nums[2] + nums[3] ,也就是 10 + 1 + 2 + 2 = 15 。
分割 [10] ,[1] ,[2,2,2] 和 [1] 不是一个合法分割,因为 ik-1 和 i1 的差为 5 - 1 = 4 ,大于 dist 。
15 是分割成 4 个子数组的最小总代价。

示例 3:

输入:nums = [10,8,18,9], k = 3, dist = 1
输出:36
解释:将数组分割成 4 个子数组的最优方案是:[10] ,[8] 和 [18,9] 。这是一个合法分割,因为 ik-1 - i1 等于 2 - 1 = 1 ,等于 dist 。总代价为 nums[0] + nums[1] + nums[2] ,也就是 10 + 8 + 18 = 36 。
分割 [10] ,[8,18] 和 [9] 不是一个合法分割,因为 ik-1 和 i1 的差为 3 - 1 = 2 ,大于 dist 。
36 是分割成 3 个子数组的最小总代价。

 

提示: