<p>Given a binary string <code>s</code>, partition the string into one or more <strong>substrings</strong> such that each substring is <strong>beautiful</strong>.</p> <p>A string is <strong>beautiful</strong> if:</p> <ul> <li>It doesn't contain leading zeros.</li> <li>It's the <strong>binary</strong> representation of a number that is a power of <code>5</code>.</li> </ul> <p>Return <em>the <strong>minimum</strong> number of substrings in such partition. </em>If it is impossible to partition the string <code>s</code> into beautiful substrings, return <code>-1</code>.</p> <p>A <strong>substring</strong> is a contiguous sequence of characters in a string.</p> <p> </p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = "1011" <strong>Output:</strong> 2 <strong>Explanation:</strong> We can paritition the given string into ["101", "1"]. - The string "101" does not contain leading zeros and is the binary representation of integer 5<sup>1</sup> = 5. - The string "1" does not contain leading zeros and is the binary representation of integer 5<sup>0</sup> = 1. It can be shown that 2 is the minimum number of beautiful substrings that s can be partitioned into. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = "111" <strong>Output:</strong> 3 <strong>Explanation:</strong> We can paritition the given string into ["1", "1", "1"]. - The string "1" does not contain leading zeros and is the binary representation of integer 5<sup>0</sup> = 1. It can be shown that 3 is the minimum number of beautiful substrings that s can be partitioned into. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = "0" <strong>Output:</strong> -1 <strong>Explanation:</strong> We can not partition the given string into beautiful substrings. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= s.length <= 15</code></li> <li><code>s[i]</code> is either <code>'0'</code> or <code>'1'</code>.</li> </ul>