{ "data": { "question": { "questionId": "1946", "questionFrontendId": "1818", "boundTopicId": null, "title": "Minimum Absolute Sum Difference", "titleSlug": "minimum-absolute-sum-difference", "content": "
You are given two positive integer arrays nums1
and nums2
, both of length n
.
The absolute sum difference of arrays nums1
and nums2
is defined as the sum of |nums1[i] - nums2[i]|
for each 0 <= i < n
(0-indexed).
You can replace at most one element of nums1
with any other element in nums1
to minimize the absolute sum difference.
Return the minimum absolute sum difference after replacing at most one element in the array nums1
. Since the answer may be large, return it modulo 109 + 7
.
|x|
is defined as:
x
if x >= 0
, or-x
if x < 0
.\n
Example 1:
\n\n\nInput: nums1 = [1,7,5], nums2 = [2,3,5]\nOutput: 3\nExplanation: There are two possible optimal solutions:\n- Replace the second element with the first: [1,7,5] => [1,1,5], or\n- Replace the second element with the third: [1,7,5] => [1,5,5].\nBoth will yield an absolute sum difference of |1-2| + (|1-3| or |5-3|) + |5-5| =
3.\n
\n\nExample 2:
\n\n\nInput: nums1 = [2,4,6,8,10], nums2 = [2,4,6,8,10]\nOutput: 0\nExplanation: nums1 is equal to nums2 so no replacement is needed. This will result in an \nabsolute sum difference of 0.\n\n\n
Example 3:
\n\n\nInput: nums1 = [1,10,4,4,2,7], nums2 = [9,3,5,1,7,4]\nOutput: 20\nExplanation: Replace the first element with the second: [1,10,4,4,2,7] => [10,10,4,4,2,7].\nThis yields an absolute sum difference of |10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20
\n
\n\n\n
Constraints:
\n\nn == nums1.length
n == nums2.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 105
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }