You are given two integer arrays persons
and times
. In an election, the ith
vote was cast for persons[i]
at time times[i]
.
For each query at a time t
, find the person that was leading the election at time t
. Votes cast at time t
will count towards our query. In the case of a tie, the most recent vote (among tied candidates) wins.
Implement the TopVotedCandidate
class:
TopVotedCandidate(int[] persons, int[] times)
Initializes the object with the persons
and times
arrays.int q(int t)
Returns the number of the person that was leading the election at time t
according to the mentioned rules.
Example 1:
Input ["TopVotedCandidate", "q", "q", "q", "q", "q", "q"] [[[0, 1, 1, 0, 0, 1, 0], [0, 5, 10, 15, 20, 25, 30]], [3], [12], [25], [15], [24], [8]] Output [null, 0, 1, 1, 0, 0, 1] Explanation TopVotedCandidate topVotedCandidate = new TopVotedCandidate([0, 1, 1, 0, 0, 1, 0], [0, 5, 10, 15, 20, 25, 30]); topVotedCandidate.q(3); // return 0, At time 3, the votes are [0], and 0 is leading. topVotedCandidate.q(12); // return 1, At time 12, the votes are [0,1,1], and 1 is leading. topVotedCandidate.q(25); // return 1, At time 25, the votes are [0,1,1,0,0,1], and 1 is leading (as ties go to the most recent vote.) topVotedCandidate.q(15); // return 0 topVotedCandidate.q(24); // return 0 topVotedCandidate.q(8); // return 1
Constraints:
1 <= persons.length <= 5000
times.length == persons.length
0 <= persons[i] < persons.length
0 <= times[i] <= 109
times
is sorted in a strictly increasing order.times[0] <= t <= 109
104
calls will be made to q
.