{ "data": { "question": { "questionId": "2131", "questionFrontendId": "2003", "boundTopicId": null, "title": "Smallest Missing Genetic Value in Each Subtree", "titleSlug": "smallest-missing-genetic-value-in-each-subtree", "content": "

There is a family tree rooted at 0 consisting of n nodes numbered 0 to n - 1. You are given a 0-indexed integer array parents, where parents[i] is the parent for node i. Since node 0 is the root, parents[0] == -1.

\n\n

There are 105 genetic values, each represented by an integer in the inclusive range [1, 105]. You are given a 0-indexed integer array nums, where nums[i] is a distinct genetic value for node i.

\n\n

Return an array ans of length n where ans[i] is the smallest genetic value that is missing from the subtree rooted at node i.

\n\n

The subtree rooted at a node x contains node x and all of its descendant nodes.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: parents = [-1,0,0,2], nums = [1,2,3,4]\nOutput: [5,1,1,1]\nExplanation: The answer for each subtree is calculated as follows:\n- 0: The subtree contains nodes [0,1,2,3] with values [1,2,3,4]. 5 is the smallest missing value.\n- 1: The subtree contains only node 1 with value 2. 1 is the smallest missing value.\n- 2: The subtree contains nodes [2,3] with values [3,4]. 1 is the smallest missing value.\n- 3: The subtree contains only node 3 with value 4. 1 is the smallest missing value.\n
\n\n

Example 2:

\n\"\"\n
\nInput: parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3]\nOutput: [7,1,1,4,2,1]\nExplanation: The answer for each subtree is calculated as follows:\n- 0: The subtree contains nodes [0,1,2,3,4,5] with values [5,4,6,2,1,3]. 7 is the smallest missing value.\n- 1: The subtree contains nodes [1,2] with values [4,6]. 1 is the smallest missing value.\n- 2: The subtree contains only node 2 with value 6. 1 is the smallest missing value.\n- 3: The subtree contains nodes [3,4,5] with values [2,1,3]. 4 is the smallest missing value.\n- 4: The subtree contains only node 4 with value 1. 2 is the smallest missing value.\n- 5: The subtree contains only node 5 with value 3. 1 is the smallest missing value.\n
\n\n

Example 3:

\n\n
\nInput: parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8]\nOutput: [1,1,1,1,1,1,1]\nExplanation: The value 1 is missing from all the subtrees.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 267, "dislikes": 16, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "[-1,0,0,2]\n[1,2,3,4]\n[-1,0,1,0,3,3]\n[5,4,6,2,1,3]\n[-1,2,3,0,2,4,1]\n[2,3,4,5,6,7,8]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Tree", "slug": "tree", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Depth-First Search", "slug": "depth-first-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Union Find", "slug": "union-find", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector smallestMissingValueSubtree(vector& parents, vector& nums) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[] smallestMissingValueSubtree(int[] parents, int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def smallestMissingValueSubtree(self, parents, nums):\n \"\"\"\n :type parents: List[int]\n :type nums: List[int]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def smallestMissingValueSubtree(self, parents: List[int], nums: List[int]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\n/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* smallestMissingValueSubtree(int* parents, int parentsSize, int* nums, int numsSize, int* returnSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[] SmallestMissingValueSubtree(int[] parents, int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} parents\n * @param {number[]} nums\n * @return {number[]}\n */\nvar smallestMissingValueSubtree = function(parents, nums) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} parents\n# @param {Integer[]} nums\n# @return {Integer[]}\ndef smallest_missing_value_subtree(parents, nums)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func smallestMissingValueSubtree(_ parents: [Int], _ nums: [Int]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func smallestMissingValueSubtree(parents []int, nums []int) []int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def smallestMissingValueSubtree(parents: Array[Int], nums: Array[Int]): Array[Int] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun smallestMissingValueSubtree(parents: IntArray, nums: IntArray): IntArray {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn smallest_missing_value_subtree(parents: Vec, nums: Vec) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $parents\n * @param Integer[] $nums\n * @return Integer[]\n */\n function smallestMissingValueSubtree($parents, $nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function smallestMissingValueSubtree(parents: number[], nums: number[]): number[] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (smallest-missing-value-subtree parents nums)\n (-> (listof exact-integer?) (listof exact-integer?) (listof exact-integer?))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec smallest_missing_value_subtree(Parents :: [integer()], Nums :: [integer()]) -> [integer()].\nsmallest_missing_value_subtree(Parents, Nums) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec smallest_missing_value_subtree(parents :: [integer], nums :: [integer]) :: [integer]\n def smallest_missing_value_subtree(parents, nums) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"4.8K\", \"totalSubmission\": \"11.4K\", \"totalAcceptedRaw\": 4817, \"totalSubmissionRaw\": 11380, \"acRate\": \"42.3%\"}", "hints": [ "If the subtree doesn't contain 1, then the missing value will always be 1.", "What data structure allows us to dynamically update the values that are currently not present?" ], "solution": null, "status": null, "sampleTestCase": "[-1,0,0,2]\n[1,2,3,4]", "metaData": "{\n \"name\": \"smallestMissingValueSubtree\",\n \"params\": [\n {\n \"name\": \"parents\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"nums\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }