{ "data": { "question": { "questionId": "2234", "questionFrontendId": "2111", "boundTopicId": null, "title": "Minimum Operations to Make the Array K-Increasing", "titleSlug": "minimum-operations-to-make-the-array-k-increasing", "content": "
You are given a 0-indexed array arr
consisting of n
positive integers, and a positive integer k
.
The array arr
is called K-increasing if arr[i-k] <= arr[i]
holds for every index i
, where k <= i <= n-1
.
arr = [4, 1, 5, 2, 6, 2]
is K-increasing for k = 2
because:\n\n\tarr[0] <= arr[2] (4 <= 5)
arr[1] <= arr[3] (1 <= 2)
arr[2] <= arr[4] (5 <= 6)
arr[3] <= arr[5] (2 <= 2)
arr
is not K-increasing for k = 1
(because arr[0] > arr[1]
) or k = 3
(because arr[0] > arr[3]
).In one operation, you can choose an index i
and change arr[i]
into any positive integer.
Return the minimum number of operations required to make the array K-increasing for the given k
.
\n
Example 1:
\n\n\nInput: arr = [5,4,3,2,1], k = 1\nOutput: 4\nExplanation:\nFor k = 1, the resultant array has to be non-decreasing.\nSome of the K-increasing arrays that can be formed are [5,6,7,8,9], [1,1,1,1,1], [2,2,3,4,4]. All of them require 4 operations.\nIt is suboptimal to change the array to, for example, [6,7,8,9,10] because it would take 5 operations.\nIt can be shown that we cannot make the array K-increasing in less than 4 operations.\n\n\n
Example 2:
\n\n\nInput: arr = [4,1,5,2,6,2], k = 2\nOutput: 0\nExplanation:\nThis is the same example as the one in the problem description.\nHere, for every index i where 2 <= i <= 5, arr[i-2] <= arr[i].\nSince the given array is already K-increasing, we do not need to perform any operations.\n\n
Example 3:
\n\n\nInput: arr = [4,1,5,2,6,2], k = 3\nOutput: 2\nExplanation:\nIndices 3 and 5 are the only ones not satisfying arr[i-3] <= arr[i] for 3 <= i <= 5.\nOne of the ways we can make the array K-increasing is by changing arr[3] to 4 and arr[5] to 5.\nThe array will now be [4,1,5,4,6,5].\nNote that there can be other ways to make the array K-increasing, but none of them require less than 2 operations.\n\n\n
\n
Constraints:
\n\n1 <= arr.length <= 105
1 <= arr[i], k <= arr.length
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.