{ "data": { "question": { "questionId": "2261", "questionFrontendId": "2155", "boundTopicId": null, "title": "All Divisions With the Highest Score of a Binary Array", "titleSlug": "all-divisions-with-the-highest-score-of-a-binary-array", "content": "
You are given a 0-indexed binary array nums of length n. nums can be divided at index i (where 0 <= i <= n) into two arrays (possibly empty) numsleft and numsright:
numsleft has all the elements of nums between index 0 and i - 1 (inclusive), while numsright has all the elements of nums between index i and n - 1 (inclusive).i == 0, numsleft is empty, while numsright has all the elements of nums.i == n, numsleft has all the elements of nums, while numsright is empty.The division score of an index i is the sum of the number of 0's in numsleft and the number of 1's in numsright.
Return all distinct indices that have the highest possible division score. You may return the answer in any order.
\n\n\n
Example 1:
\n\n\nInput: nums = [0,0,1,0]\nOutput: [2,4]\nExplanation: Division at index\n- 0: numsleft is []. numsright is [0,0,1,0]. The score is 0 + 1 = 1.\n- 1: numsleft is [0]. numsright is [0,1,0]. The score is 1 + 1 = 2.\n- 2: numsleft is [0,0]. numsright is [1,0]. The score is 2 + 1 = 3.\n- 3: numsleft is [0,0,1]. numsright is [0]. The score is 2 + 0 = 2.\n- 4: numsleft is [0,0,1,0]. numsright is []. The score is 3 + 0 = 3.\nIndices 2 and 4 both have the highest possible division score 3.\nNote the answer [4,2] would also be accepted.\n\n
Example 2:
\n\n\nInput: nums = [0,0,0]\nOutput: [3]\nExplanation: Division at index\n- 0: numsleft is []. numsright is [0,0,0]. The score is 0 + 0 = 0.\n- 1: numsleft is [0]. numsright is [0,0]. The score is 1 + 0 = 1.\n- 2: numsleft is [0,0]. numsright is [0]. The score is 2 + 0 = 2.\n- 3: numsleft is [0,0,0]. numsright is []. The score is 3 + 0 = 3.\nOnly index 3 has the highest possible division score 3.\n\n\n
Example 3:
\n\n\nInput: nums = [1,1]\nOutput: [0]\nExplanation: Division at index\n- 0: numsleft is []. numsright is [1,1]. The score is 0 + 2 = 2.\n- 1: numsleft is [1]. numsright is [1]. The score is 0 + 1 = 1.\n- 2: numsleft is [1,1]. numsright is []. The score is 0 + 0 = 0.\nOnly index 0 has the highest possible division score 2.\n\n\n
\n
Constraints:
\n\nn == nums.length1 <= n <= 105nums[i] is either 0 or 1.Compiled with clang 11 using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2 using the gnu99 standard.
Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\nYour code is compiled with debug flag enabled (/debug).
Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2.
Go 1.17.6.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7.
Kotlin 1.3.10.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3.