You are given a stream of records about a particular stock. Each record contains a timestamp and the corresponding price of the stock at that timestamp.
Unfortunately due to the volatile nature of the stock market, the records do not come in order. Even worse, some records may be incorrect. Another record with the same timestamp may appear later in the stream correcting the price of the previous wrong record.
Design an algorithm that:
Implement the StockPrice
class:
StockPrice()
Initializes the object with no price records.void update(int timestamp, int price)
Updates the price
of the stock at the given timestamp
.int current()
Returns the latest price of the stock.int maximum()
Returns the maximum price of the stock.int minimum()
Returns the minimum price of the stock.
Example 1:
Input ["StockPrice", "update", "update", "current", "maximum", "update", "maximum", "update", "minimum"] [[], [1, 10], [2, 5], [], [], [1, 3], [], [4, 2], []] Output [null, null, null, 5, 10, null, 5, null, 2] Explanation StockPrice stockPrice = new StockPrice(); stockPrice.update(1, 10); // Timestamps are [1] with corresponding prices [10]. stockPrice.update(2, 5); // Timestamps are [1,2] with corresponding prices [10,5]. stockPrice.current(); // return 5, the latest timestamp is 2 with the price being 5. stockPrice.maximum(); // return 10, the maximum price is 10 at timestamp 1. stockPrice.update(1, 3); // The previous timestamp 1 had the wrong price, so it is updated to 3. // Timestamps are [1,2] with corresponding prices [3,5]. stockPrice.maximum(); // return 5, the maximum price is 5 after the correction. stockPrice.update(4, 2); // Timestamps are [1,2,4] with corresponding prices [3,5,2]. stockPrice.minimum(); // return 2, the minimum price is 2 at timestamp 4.
Constraints:
1 <= timestamp, price <= 109
105
calls will be made in total to update
, current
, maximum
, and minimum
.current
, maximum
, and minimum
will be called only after update
has been called at least once.