{ "data": { "question": { "questionId": "2751", "questionFrontendId": "2653", "boundTopicId": null, "title": "Sliding Subarray Beauty", "titleSlug": "sliding-subarray-beauty", "content": "
Given an integer array nums containing n integers, find the beauty of each subarray of size k.
The beauty of a subarray is the xth smallest integer in the subarray if it is negative, or 0 if there are fewer than x negative integers.
Return an integer array containing n - k + 1 integers, which denote the beauty of the subarrays in order from the first index in the array.
A subarray is a contiguous non-empty sequence of elements within an array.
\n\t\n
Example 1:
\n\n\nInput: nums = [1,-1,-3,-2,3], k = 3, x = 2\nOutput: [-1,-2,-2]\nExplanation: There are 3 subarrays with size k = 3. \nThe first subarray is\n\n[1, -1, -3]and the 2nd smallest negative integer is -1. \nThe second subarray is[-1, -3, -2]and the 2nd smallest negative integer is -2. \nThe third subarray is[-3, -2, 3]and the 2nd smallest negative integer is -2.
Example 2:
\n\n\nInput: nums = [-1,-2,-3,-4,-5], k = 2, x = 2\nOutput: [-1,-2,-3,-4]\nExplanation: There are 4 subarrays with size k = 2.\nFor\n\n[-1, -2], the 2nd smallest negative integer is -1.\nFor[-2, -3], the 2nd smallest negative integer is -2.\nFor[-3, -4], the 2nd smallest negative integer is -3.\nFor[-4, -5], the 2nd smallest negative integer is -4.
Example 3:
\n\n\nInput: nums = [-3,1,2,-3,0,-3], k = 2, x = 1\nOutput: [-3,0,-3,-3,-3]\nExplanation: There are 5 subarrays with size k = 2.\nFor\n\n[-3, 1], the 1st smallest negative integer is -3.\nFor[1, 2], there is no negative integer so the beauty is 0.\nFor[2, -3], the 1st smallest negative integer is -3.\nFor[-3, 0], the 1st smallest negative integer is -3.\nFor[0, -3], the 1st smallest negative integer is -3.
\n
Constraints:
\n\nn == nums.length 1 <= n <= 1051 <= k <= n1 <= x <= k -50 <= nums[i] <= 50 Compiled with clang 11 using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2 using the gnu11 standard.
Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7.
Kotlin 1.9.0.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2.
Your code is run with --harmony flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }