给你一个 二维 整数数组 coordinates
和一个整数 k
,其中 coordinates[i] = [xi, yi]
是第 i
个点在二维平面里的坐标。
我们定义两个点 (x1, y1)
和 (x2, y2)
的 距离 为 (x1 XOR x2) + (y1 XOR y2)
,XOR
指的是按位异或运算。
请你返回满足 i < j
且点 i
和点 j
之间距离为 k
的点对数目。
示例 1:
输入:coordinates = [[1,2],[4,2],[1,3],[5,2]], k = 5 输出:2 解释:以下点对距离为 k : - (0, 1):(1 XOR 4) + (2 XOR 2) = 5 。 - (2, 3):(1 XOR 5) + (3 XOR 2) = 5 。
示例 2:
输入:coordinates = [[1,3],[1,3],[1,3],[1,3],[1,3]], k = 0 输出:10 解释:任何两个点之间的距离都为 0 ,所以总共有 10 组点对。
提示:
2 <= coordinates.length <= 50000
0 <= xi, yi <= 106
0 <= k <= 100